导读

大家好,今日立秋,立秋是阳气渐收、阴气渐长,由阳盛逐渐转变为阴盛的转折。我们上一篇文章 数据仓库之维度表 介绍了数据仓库中维度表,本篇文章在此基础上介绍和构建维度表中的日期维度。Kimball 维度建模中的设计原则提到确保每一个事实表都具有关联的日期维度。数据仓库项目中,日期维度是最常见的,不可缺少的维度表之一。

数据仓库之维度表

本文中 ETL 转换使用 Kettle 9.3 版本实现,关注公众号回复关键字 dim_date 获取。

为什么需要日期维度表

Kimball 认为数据仓库中最重要的三个主题是向下钻取,横向钻取和时间处理。时间处理正式其中之一,而日期维度为数据仓库提供了时间处理的可能性。这里我们复习一下数据仓库的概念,Inmon 对数据仓库的描述是:“面向主题的,整合的,随时间变化的,包含汇总和明细的,稳定的历史数据集合”。 数据仓库中存储的是企业中某个时间段的数据,数据仓库中的数据像快照一样,每一个张快照都反映了某个时点的数据状态。这也意味着,无论用户什么时间到数据仓库查询,都会得到某个时间段的相同结果。

四维时空理论中,零维是点,一维是线,二维是面,三维是提,四维是由无穷多个三维加一个时间维度,也称为 3+1维时空。四维时空中的时间维是一直向前的,科学家都认为时间为是一种伪维度。

日期维度的特点

文章来源

评论可见,请评论后查看内容,谢谢!!!
 您阅读本篇文章共花了: