文章目录

1、AVL树1.1 AVL树的概念

2、AVL树节点的定义3、AVL树的插入和旋转3.1 左单旋左旋代码实现

3.2 右单旋右旋代码实现

3.3 右左双旋右左双旋的代码实现

3.4 左右双旋左右双旋的代码实现

3.5 insert接口实现

4、判断是否为AVL树判断AVL树的代码实现

5、AVL树的性能

问题引入: 在上一篇文章中,我们提到了二叉搜索树在插入时,可能会形成单边树,会降低二叉搜索的性能。因此我们需要平衡二叉搜索树,降低二叉搜索树的高度,使得二叉搜索树趋于一颗完全二叉树的样子,这样就可以提高二叉搜索树的性能。本篇文章就来介绍一种平衡二叉树,AVL树。

1、AVL树

1.1 AVL树的概念

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。 一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

它的左右子树都是AVL树左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1) 如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在O(log N),搜索时间复杂度O(log N)。 我们了解了AVL树的基本规则后,下面我们来实现一下AVL树。

2、AVL树节点的定义

template

struct AVLTreeNode

{

AVLTreeNode* _left;

AVLTreeNode* _right;

AVLTreeNode* _parent;

pair _kv;

// 右子树 - 左子树 的高度差

int _bf; // 平衡因子

AVLTreeNode(const pair& kv)

:_left(nullptr)

,_right(nullptr)

,_parent(nullptr)

,_kv(kv)

,_bf(0)

{}

};

3、AVL树的插入和旋转

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么 AVL树的插入过程可以分为两步: 1. 按照二叉搜索树的方式插入新节点 2. 调整节点的平衡因子 当某个节点的平衡因子被修改为2的时候,就需要旋转来调节,因此就存在一下四种旋转方式:

3.1 左单旋

我们将 左单旋的情况抽象出来,如下图所示:

当 h >= 0,且parent->_bf == 2 && subR->_bf == 1时,触发左旋。 在这个图中,只能是在 c 子树新增,才能触发左旋的条件parent->_bf == 2 && subR->_bf == 1。此时进行左旋。 如果是在 b 子树新增,那么仅仅左旋是不够的, 旋转步骤:将60的左树变为30的右树,将60的左树变为30,最后将parent和subR的平衡因子变为0就完成了左旋。

左旋代码实现

// 左单旋

void RotateL(Node* parent)

{

Node* subR = parent->_right;

Node* subRL = subR->_left;

Node* parentParent = parent->_parent;

parent->_right = subRL;

if (subRL)

subRL->_parent = parent;

subR->_left = parent;

parent->_parent = subR;

if (_root == parent) // 父节点就是根节点

{

_root = subR;

subR->_parent = nullptr;

}

else // 子树情况

{

if (parentParent->_left == parent)

{

parentParent->_left = subR;

}

else

{

parentParent->_right = subR;

}

subR->_parent = parentParent;

}

// 修改平衡因子

parent->_bf = subR->_bf = 0;

}

3.2 右单旋

我们将 右单旋的情况抽象出来,如下图所示: 当 h >= 0,且 parent->_bf == 2 && subL->_bf == -1时,触发右旋。 在这个图中,只能是在 a子树新增,才能触发右旋的条件parent->_bf == -2 && subL->_bf == -1。此时进行右旋。 如果是在 b 子树新增,那么仅仅右旋是不够的。 旋转步骤:将30的右树接到60的左树并断开与30的链接,再将60接到30的右树,并将60的父节点改为3,最后再调整parent与SubL的平衡因子为0,就完成整个右旋。

右旋代码实现

// 右单旋

void RotateR(Node* parent)

{

Node* parentParent = parent->_parent;

Node* subL = parent->_left;

Node* subLR = subL->_right;

parent->_left = subLR;

if (subLR)

subLR->_parent = parent;

subL->_right = parent;

parent->_parent = subL;

if (_root == parent) // 父节点是根节点

{

_root = subL;

subL->_parent = nullptr;

}

else // 子树情况

{

if (parentParent->_left == parent)

{

parentParent->_left = subL;

}

else

{

parentParent->_right = subL;

}

subL->_parent = parentParent;

}

// 修改平衡因子

parent->_bf = subL->_bf = 0;

}

3.3 右左双旋

我们将 右左双旋的所有情况抽象出来,如下图所示:

右左双旋的本质是先将子树右旋,让右侧一侧高,再进行整体的左旋,这样就完成了高度的调整。 双旋的插入位置可以是 b/c 子树,此类型插入之后就会触发右左双旋。 旋转步骤:直接复用右旋,再复用左旋即可。不过旋转的基点不同,右旋是以subR为基点,左旋是以parent为基点旋转的。旋转就完成了,难点在于平衡因子的调节。 平衡因子的调节: 这里主要是 记下subRL最初的平衡因子,它的平衡因子就代表了插入节点是在subRL的左边还是右边插入的,由此可以推出最终的parent与subR的平衡因子。

当subRL->_bf = 1时,最后parent->_bf = -1,subR->_bf = 0,subRL->_bf = 0;当subRL->_bf = -1时,最后parent->_bf = 0,subR->_bf = 1,subRL->_bf = 0;当subRL->_bf = 0时,最后parent->_bf = 0,subR->_bf = 0,subRL->_bf = 0;

右左双旋的代码实现

// 右左双旋

void RotateRL(Node* parent)

{

Node* subR = parent->_right;

Node* subRL = subR->_left;

int bf = subRL->_bf;

RotateR(subR);

RotateL(parent);

if (bf == 0) // subRL 就是插入的

{

parent->_bf = subR->_bf = subRL->_bf = 0;

}

else if (bf == 1) // subRL 右边边插入

{

parent->_bf = -1;

subR->_bf = 0;

subRL->_bf = 0;

}

else if (bf == -1) // subRL 左边插入

{

parent->_bf = 0;

subR->_bf = 1;

subRL->_bf = 0;

}

else

{

assert(false);

}

}

3.4 左右双旋

我们将 右左双旋的所有情况抽象出来,如下图所示:

左右双旋与右左双旋的思路是差不多的,我们来看看。 左右双旋的本质是先将子树左旋,让左侧一侧高,在进行整体的右旋,这样就完成了高度的调整。 双旋的插入位置可以是 b/c 子树,此类型插入之后就会触发左右双旋。 旋转步骤:直接复用左旋,再复用右旋即可。不过旋转的基点不同,右旋是以subR为基点,左旋是以parent为基点旋转的。旋转就完成了,难点也是在于平衡因子的调节。 平衡因子的调节: 这里主要是 记下subLR最初的平衡因子,它的平衡因子就代表了插入节点是在subLR的左边还是右边插入的,由此可以推出最终的parent与subL的平衡因子。

当subLR->_bf = 1时,最后parent->_bf = 1,subL->_bf = 0,subLR->_bf = 0;当subLR->_bf = 1时,最后parent->_bf = 0,subL->_bf = -1,subLR->_bf = 0;当subLR->_bf = 0时,最后parent->_bf = 0,subL->_bf = 0,subLR->_bf = 0;

左右双旋的代码实现

// 左右双旋

void RotateLR(Node* parent)

{

Node* subL = parent->_left;

Node* subLR = subL->_right;

int bf = subLR->_bf;

RotateL(subL);

RotateR(parent);

if (0 == bf)

{

parent->_bf = subL->_bf = subLR->_bf = 0;

}

else if (1 == bf)

{

parent->_bf = 0;

subL->_bf = -1;

subLR->_bf = 0;

}

else if (-1 == bf)

{

parent->_bf = 1;

subL->_bf = 0;

subLR->_bf = 0;

}

else

{

assert(false);

}

}

3.5 insert接口实现

bool Insert(const pair& kv)

{

if (_root == nullptr)

{

_root = new Node(kv);

return true;

}

Node* parent = nullptr;

Node* cur = _root;

// 1、先找到插入的位置

while (cur)

{

if (cur->_kv.first < kv.first)

{

parent = cur;

cur = cur->_right;

}

else if (cur->_kv.first > kv.first)

{

parent = cur;

cur = cur->_left;

}

else

{

return false;

}

}

// 2、new一个节点,并与parent链接起来

cur = new Node(kv);

if (parent->_kv.first < kv.first)

{

parent->_right = cur;

cur->_parent = parent;

}

else

{

parent->_left = cur;

cur->_parent = parent;

}

// 3、调平横 —— 旋转 + 平衡因子的调节

while (parent)

{

if (parent->_left == cur)

{

parent->_bf--;

}

else

{

parent->_bf++;

}

if (0 == parent->_bf)

{

break;

}

else if (parent->_bf == -1 || parent->_bf == 1)

{

cur = parent;

parent = parent->_parent;

}

else if (parent->_bf == -2 || parent->_bf == 2)

{

if (parent->_bf == 2 && cur->_bf == 1)

{

RotateL(parent);

}

else if (parent->_bf == 2 && cur->_bf == -1)

{

RotateRL(parent);

}

else if (parent->_bf == -2 && cur->_bf == 1)

{

RotateLR(parent);

}

else if (parent->_bf == -2 && cur->_bf == -1)

{

RotateR(parent);

}

// 1、旋转让这颗子树平衡了

// 2、旋转降低了这颗子树的高度,恢复到跟插入前一样的高度,所以对上一层没有影响,不用继续更新

break;

}

else

{

assert(false);

}

}

return true;

}

4、判断是否为AVL树

AVL树的本质是搜索二叉树 + 平衡机制,所以验证步骤: 1、首先判断是否为搜索树,写一个中序遍历,看看是不是升序即可; 2、按照AVL树的性质来判断:

每个节点的左右子树高度差绝对值小于等于1;节点的平衡因子是否正确;

判断AVL树的代码实现

bool _IsBalance(Node* pRoot)

{

if (pRoot == nullptr)

return true;

int leftHeight = _Height(pRoot->_left);

int rightHeight = _Height(pRoot->_right);

if (rightHeight - leftHeight != pRoot->_bf)

{

cout << pRoot->_kv.first << "平衡因子异常" << endl;

return false;

}

return rightHeight - leftHeight < 2

&& _IsAVLTree(pRoot->_left)

&& _IsAVLTree(pRoot->_right);

}

size_t _Height(Node* pRoot)

{

if (pRoot == nullptr)

return 0;

int leftHeight = _Height(pRoot->_left);

int rightHeight = _Height(pRoot->_right);

return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;

}

void _InOrder(Node* pRoot)

{

if (pRoot == nullptr)

return;

_InOrder(pRoot->_left);

cout << pRoot->_kv.first << " ";

_InOrder(pRoot->_right);

}

5、AVL树的性能

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即O(log N)。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。 AVL树的实现代码放在代码仓库:https://gitee.com/xiaobai-is-working-hard-jy/data-structure/tree/master/AVLTree

参考链接

评论可见,请评论后查看内容,谢谢!!!
 您阅读本篇文章共花了: