医疗图像分割任务中,捕获多尺度信息、构建长期依赖对分割结果有非常大的影响。该论文提出了 Multi-scale Cross-axis Attention(MCA)模块,融合了多尺度特征,并使用Attention提取全局上下文信息。

论文地址:MCANet: Medical Image Segmentation with Multi-Scale Cross-Axis Attention

代码地址:https://github.com/haoshao-nku/medical_seg

一、MCA(Multi-scale Cross-axis Attention)

MCA的结构如下,将E2/3/4通过concat连接起来(concat前先插值到同样分辨率),经过1x1的卷积后(压缩通道数来降低计算量),得到了包含多尺度信息的特征图F,然后在X和Y方向使用不同大小的卷积核进行卷积运算(比如1x11的卷积是x方向,11x1的是y方向,这里可以对着代码看,容易理解),将Q在X和Y方向交换后(这就是Cross-Axis),经过注意力模块后,将多个特征图相加,并融合E1,经过卷积后得到输出。该模块有以下特点:

1、注意力机制作用在多个不同尺度的特征图;

2、Multi-Scale x-Axis Convolution和Multi-Scale y-Axis Convolution分别关注不同轴的特征,在计算注意力时交叉计算,使得不同方向的特征都能被关注到。

MCA细节如下图,输入特征图进入x和y方向的路径,经过不同大小的卷积后进行融合,然后跨轴(x和y轴的Q交换)计算Attention,最后得到输出特征图。

二、代码

MCA的代码如下所示,总体来说比较简单:

from audioop import bias

from pip import main

import torch

import torch.nn as nn

import torch.nn.functional as F

import numbers

from mmseg.registry import MODELS

from einops import rearrange

from ..utils import resize

from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule

from mmseg.models.decode_heads.decode_head import BaseDecodeHead

def to_3d(x):

return rearrange(x, 'b c h w -> b (h w) c')

def to_4d(x,h,w):

return rearrange(x, 'b (h w) c -> b c h w',h=h,w=w)

class BiasFree_LayerNorm(nn.Module):

def __init__(self, normalized_shape):

super(BiasFree_LayerNorm, self).__init__()

if isinstance(normalized_shape, numbers.Integral):

normalized_shape = (normalized_shape,)

normalized_shape = torch.Size(normalized_shape)

assert len(normalized_shape) == 1

self.weight = nn.Parameter(torch.ones(normalized_shape))

self.normalized_shape = normalized_shape

def forward(self, x):

sigma = x.var(-1, keepdim=True, unbiased=False)

return x / torch.sqrt(sigma+1e-5) * self.weight

class WithBias_LayerNorm(nn.Module):

def __init__(self, normalized_shape):

super(WithBias_LayerNorm, self).__init__()

if isinstance(normalized_shape, numbers.Integral):

normalized_shape = (normalized_shape,)

normalized_shape = torch.Size(normalized_shape)

assert len(normalized_shape) == 1

self.weight = nn.Parameter(torch.ones(normalized_shape))

self.bias = nn.Parameter(torch.zeros(normalized_shape))

self.normalized_shape = normalized_shape

def forward(self, x):

mu = x.mean(-1, keepdim=True)

sigma = x.var(-1, keepdim=True, unbiased=False)

return (x - mu) / torch.sqrt(sigma+1e-5) * self.weight + self.bias

class LayerNorm(nn.Module):

def __init__(self, dim, LayerNorm_type):

super(LayerNorm, self).__init__()

if LayerNorm_type =='BiasFree':

self.body = BiasFree_LayerNorm(dim)

else:

self.body = WithBias_LayerNorm(dim)

def forward(self, x):

h, w = x.shape[-2:]

return to_4d(self.body(to_3d(x)), h, w)

class Attention(nn.Module):

def __init__(self, dim, num_heads,LayerNorm_type,):

super(Attention, self).__init__()

self.num_heads = num_heads

self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1))

self.norm1 = LayerNorm(dim, LayerNorm_type)

self.project_out = nn.Conv2d(dim, dim, kernel_size=1)

self.conv0_1 = nn.Conv2d(dim, dim, (1, 7), padding=(0, 3), groups=dim)

self.conv0_2 = nn.Conv2d(dim, dim, (7, 1), padding=(3, 0), groups=dim)

self.conv1_1 = nn.Conv2d(dim, dim, (1, 11), padding=(0, 5), groups=dim)

self.conv1_2 = nn.Conv2d(dim, dim, (11, 1), padding=(5, 0), groups=dim)

self.conv2_1 = nn.Conv2d(

dim, dim, (1, 21), padding=(0, 10), groups=dim)

self.conv2_2 = nn.Conv2d(

dim, dim, (21, 1), padding=(10, 0), groups=dim)

def forward(self, x):

b,c,h,w = x.shape

x1 = self.norm1(x)

attn_00 = self.conv0_1(x1)

attn_01= self.conv0_2(x1)

attn_10 = self.conv1_1(x1)

attn_11 = self.conv1_2(x1)

attn_20 = self.conv2_1(x1)

attn_21 = self.conv2_2(x1)

out1 = attn_00+attn_10+attn_20

out2 = attn_01+attn_11+attn_21

out1 = self.project_out(out1)

out2 = self.project_out(out2)

k1 = rearrange(out1, 'b (head c) h w -> b head h (w c)', head=self.num_heads)

v1 = rearrange(out1, 'b (head c) h w -> b head h (w c)', head=self.num_heads)

k2 = rearrange(out2, 'b (head c) h w -> b head w (h c)', head=self.num_heads)

v2 = rearrange(out2, 'b (head c) h w -> b head w (h c)', head=self.num_heads)

q2 = rearrange(out1, 'b (head c) h w -> b head w (h c)', head=self.num_heads)

q1 = rearrange(out2, 'b (head c) h w -> b head h (w c)', head=self.num_heads)

q1 = torch.nn.functional.normalize(q1, dim=-1)

q2 = torch.nn.functional.normalize(q2, dim=-1)

k1 = torch.nn.functional.normalize(k1, dim=-1)

k2 = torch.nn.functional.normalize(k2, dim=-1)

attn1 = (q1 @ k1.transpose(-2, -1))

attn1 = attn1.softmax(dim=-1)

out3 = (attn1 @ v1) + q1

attn2 = (q2 @ k2.transpose(-2, -1))

attn2 = attn2.softmax(dim=-1)

out4 = (attn2 @ v2) + q2

out3 = rearrange(out3, 'b head h (w c) -> b (head c) h w', head=self.num_heads, h=h, w=w)

out4 = rearrange(out4, 'b head w (h c) -> b (head c) h w', head=self.num_heads, h=h, w=w)

out = self.project_out(out3) + self.project_out(out4) + x

return out

@MODELS.register_module()

class MCAHead(BaseDecodeHead):

def __init__(self,in_channels,image_size,heads,c1_channels,

**kwargs):

super(MCAHead, self).__init__(in_channels,input_transform = 'multiple_select',**kwargs)

self.image_size = image_size

self.decoder_level = Attention(in_channels[1],heads,LayerNorm_type = 'WithBias')

self.align = ConvModule(

in_channels[3],

in_channels[0],

1,

conv_cfg=self.conv_cfg,

norm_cfg=self.norm_cfg,

act_cfg=self.act_cfg)

self.squeeze = ConvModule(

sum((in_channels[1],in_channels[2],in_channels[3])),

in_channels[1],

1,

conv_cfg=self.conv_cfg,

norm_cfg=self.norm_cfg,

act_cfg=self.act_cfg)

self.sep_bottleneck = nn.Sequential(

DepthwiseSeparableConvModule(

in_channels[1] + in_channels[0],

in_channels[3],

3,

padding=1,

norm_cfg=self.norm_cfg,

act_cfg=self.act_cfg),

DepthwiseSeparableConvModule(

in_channels[3],

in_channels[3],

3,

padding=1,

norm_cfg=self.norm_cfg,

act_cfg=self.act_cfg))

def forward(self, inputs):

"""Forward function."""

inputs = self._transform_inputs(inputs)

inputs = [resize(

level,

size=self.image_size,

mode='bilinear',

align_corners=self.align_corners

) for level in inputs]

y1 = torch.cat([inputs[1],inputs[2],inputs[3]], dim=1)

x = self.squeeze(y1)

x = self.decoder_level(x)

x = torch.cat([x,inputs[0]], dim=1)

x = self.sep_bottleneck(x)

output = self.align(x)

output = self.cls_seg(output)

return output

相关文章

评论可见,请评论后查看内容,谢谢!!!
 您阅读本篇文章共花了: