❤️AllenIverrui❤️

个人博客

gitee

B站

近期文章:

《docker 常规软件的安装》

《Linux配置静态ip》

《Docker-compose容器编排》

文章目录

爱心代码合集three.jshtml + javascriptc++python -1python -2

爱心代码合集

所有代码均来源于网络,若侵犯到你的利益请联系删除 视频教程 https://b23.tv/0jY9AH5

three.js

浏览地址 love.alleniverrui.top

html + javascript

浏览地址 love.alleniverrui.top/2

代码地址 https://gitee.com/alleniverrui/love

c++

所需环境 easyx

#include

#include

#include

#include

#include

//爱心点结构体

struct Point {

double x, y; //坐标

COLORREF color; //颜色

};

//颜色数组

COLORREF colors[7] = { RGB(255,32,83),RGB(252,222,250) ,RGB(255,0,0) ,RGB(255,0,0) ,RGB(255,2,2) ,RGB(255,0,8) ,RGB(255,5,5) };

//COLORREF colors[7] = { RGB(55,132,83),RGB(252,222,250) ,RGB(25,120,130) ,RGB(25,230,40) ,RGB(25,24,112) ,RGB(255,230,128) ,RGB(25,5,215) };

const int xScreen = 1200; //屏幕宽度

const int yScreen = 800; //屏幕高度

const double PI = 3.1426535159; //圆周率

const double e = 2.71828; //自然数e

const double averag_distance = 0.162; //弧度以0.01增长时,原始参数方程每个点的平均距离

const int quantity = 506; //一个完整爱心所需点的数量

const int circles = 210; //组成爱心主体的爱心个数(每个爱心会乘以不同系数)

const int frames = 20; //爱心扩张一次的帧数

Point origin_points[quantity]; //创建一个保存原始爱心数据的数组

Point points[circles * quantity]; //创建一个保存所有爱心数据的数组

IMAGE images[frames]; //创建图片数组

//坐标转换函数

double screen_x(double x)

{

x += xScreen / 2;

return x;

}

//坐标转换函数

double screen_y(double y)

{

y = -y + yScreen / 2;

return y;

}

//创建x1-x2的随机数的函数

int creat_random(int x1, int x2)

{

if (x2 > x1)

return rand() % (x2 - x1 + 1) + x1;

else

return 0;

}

//创建爱心扩张一次的全部数据,并绘制成20张图片保存

// 1 用参数方程计算出一个爱心的所有坐标并保存在 origin_points 中

// 2 重复对 origin_points 的所有坐标乘上不同的系数获得一个完整的爱心坐标数据,并保存在 points 中

// 3 通过一些数学逻辑计算 points 中所有点扩张后的坐标并绘制,并覆盖掉原来的数据(循环20次)

// 4 计算圆的外层那些闪动的点,不保存这些点的数据(循环20次)

void creat_data()

{

int index = 0;

//保存相邻的坐标信息以便用于计算距离

double x1 = 0, y1 = 0, x2 = 0, y2 = 0;

for (double radian = 0.1; radian <= 2 * PI; radian += 0.005)

{

//爱心的参数方程

x2 = 16 * pow(sin(radian), 3);

y2 = 13 * cos(radian) - 5 * cos(2 * radian) - 2 * cos(3 * radian) - cos(4 * radian);

//计算两点之间的距离 开根号((x1-x2)平方 + (y1-y1)平方)

double distance = sqrt(pow(x2 - x1, 2) + pow(y2 - y1, 2));

//只有当两点之间的距离大于平均距离才保存这个点,否则跳过这个点

if (distance > averag_distance)

{

//x1和y1保留当前数据

//x2和y2将在下一次迭代获得下一个点的坐标

x1 = x2, y1 = y2;

origin_points[index].x = x2;

origin_points[index++].y = y2;

}

}

index = 0;

for (double size = 0.1; size <= 20; size += 0.1)

{

//用sigmoid函数计算当前系数的成功概率

//用个例子说明一下,假设有100个点成功概率为 90%,那么就可能会有90个点经过筛选保留下来

// 假设有100个点成功概率为 20%,那么就可能会有20个点经过筛选保留下来

double success_p = 1 / (1 + pow(e, 8 - size / 2));

//遍历所有原始数据

for (int i = 0; i < quantity; ++i)

{

//用概率进行筛选

if (success_p > creat_random(0, 100) / 100.0)

{

//从颜色数组随机获得一个颜色

points[index].color = colors[creat_random(0, 6)];

//对原始数据乘上系数保存在points中

points[index].x = size * origin_points[i].x + creat_random(-4, 4);

points[index++].y = size * origin_points[i].y + creat_random(-4, 4);

}

}

}

//index当前值就是points中保存了结构体的数量

int points_size = index;

for (int frame = 0; frame < frames; ++frame)

{

//初始化每张图片宽xScreen,高yScreen

images[frame] = IMAGE(xScreen, yScreen);

//把第frame张图像设为当前工作图片

SetWorkingImage(&images[frame]);

//计算爱心跳动的坐标

for (index = 0; index < points_size; ++index)

{

double x = points[index].x, y = points[index].y; //把当前值赋值给x和y

double distance = sqrt(pow(x, 2) + pow(y, 2)); //计算当前点与原点的距离

double diatance_increase = -0.0009 * distance * distance + 0.35714 * distance + 5; //把当前距离代入方程获得该点的增长距离

//根据增长距离计算x轴方向的增长距离 x_increase = diatance_increase * cos(当前角度)

//cos(当前角度)= x / distance

double x_increase = diatance_increase * x / distance / frames;

//根据增长距离计算x轴方向的增长距离 x_increase = diatance_increase * sin(当前角度)

//sin(当前角度)= y / distance

double y_increase = diatance_increase * y / distance / frames;

//因为以上计算得到的是一整个过程的增长距离,而整个过程持续20帧,因此要除20

//用新的数据覆盖原来的数据

points[index].x += x_increase;

points[index].y += y_increase;

//提取当前点的颜色设置为绘画颜色

setfillcolor(points[index].color);

//注意,因为以上所有坐标是基于数学坐标的

//因此绘制到屏幕是就要转换为屏幕坐标

solidcircle(screen_x(points[index].x), screen_y(points[index].y), 1);

}

//产生外围闪动的点

for (double size = 17; size < 23; size += 0.3)

{

for (index = 0; index < quantity; ++index)

{

//当系数大于等于20,通过概率为百分之四十,当系数小于20,通过概率为百分之五

//20作为关键值是因为爱心主体的最大系数就是20

if ((creat_random(0, 100) / 100.0 > 0.6 && size >= 20) || (size < 20 && creat_random(0, 100) / 100.0 > 0.95))

{

double x, y;

if (size >= 20)

{

//用frame的平方的正负值作为上下限并加减15产生随机数

//用frame的平方的好处是frame越大,外围闪动的点运动范围越大

x = origin_points[index].x * size + creat_random(-frame * frame / 5 - 15, frame * frame / 5 + 15);

y = origin_points[index].y * size + creat_random(-frame * frame / 5 - 15, frame * frame / 5 + 15);

}

else

{

//对于系数小于20的处理与爱心点一样

x = origin_points[index].x * size + creat_random(-5, 5);

y = origin_points[index].y * size + creat_random(-5, 5);

}

//随机获取颜色并设置为当前绘图颜色

setfillcolor(colors[creat_random(0, 6)]);

//把数学坐标转换为屏幕坐标再进行绘制

solidcircle(screen_x(x), screen_y(y), 1);

//需要注意的是,我并没有保存这些点,因为这些点不需要前一帧的坐标数据

//只需要当前系数就可绘制出来,因此没 必要保存

}

}

}

}

}

int main()

{

initgraph(xScreen, yScreen); //创建屏幕

BeginBatchDraw(); //开始批量绘图

srand(time(0)); //初始化随机种子

creat_data(); //调用函数产生20张图片

SetWorkingImage(); //调用函数把工作图像恢复为窗口,没有添加参数默认为窗口

//因为接下是用窗口播放图片,因此要把绘图效果设置为窗口

bool extend = true, shrink = false;

for (int frame = 0; !_kbhit();) //退出条件为检测到按键信息

{

putimage(0, 0, &images[frame]); //播放第frame张图片

FlushBatchDraw(); //刷新批量绘图

Sleep(20); //延时20毫秒

cleardevice(); //清除屏幕,用来播放下一帧图片

//注意 creat data 产生的只是爱心扩张的20张图片,并没有产生爱心收缩的图片

//但是把扩张的图片倒着播放就产生的收缩的效果

//所以下面这个 if else 语句就是决定图片是正常播放还是倒着播放

if (extend) //扩张时, ++frame,正常播放

frame == 19 ? (shrink = true, extend = false) : ++frame;

else //收缩时, --frame,倒着播放

frame == 0 ? (shrink = false, extend = true) : --frame;

}

EndBatchDraw(); //关闭批量绘图

closegraph(); //关闭绘图窗口

return 0; //结束程序

}

python -1

import random

from math import sin, cos, pi, log

from tkinter import *

CANVAS_WIDTH = 640 # 画布的宽

CANVAS_HEIGHT = 480 # 画布的高

CANVAS_CENTER_X = CANVAS_WIDTH / 2 # 画布中心的X轴坐标

CANVAS_CENTER_Y = CANVAS_HEIGHT / 2 # 画布中心的Y轴坐标

IMAGE_ENLARGE = 11 # 放大比例

HEART_COLOR = "#ff6781" # 心的颜色,这个是粉红

def heart_function(t, shrink_ratio: float = IMAGE_ENLARGE):

"""

“爱心函数生成器”

:param shrink_ratio: 放大比例

:param t: 参数

:return: 坐标

"""

# 基础函数

x = 16 * (sin(t) ** 3)

y = -(13 * cos(t) - 5 * cos(2 * t) - 2 * cos(3 * t) - cos(4 * t))

# 放大

x *= shrink_ratio

y *= shrink_ratio

# 移到画布中央

x += CANVAS_CENTER_X

y += CANVAS_CENTER_Y

return int(x), int(y)

def scatter_inside(x, y, beta=0.15):

"""

随机内部扩散

:param x: 原x

:param y: 原y

:param beta: 强度

:return: 新坐标

"""

ratio_x = - beta * log(random.random())

ratio_y = - beta * log(random.random())

dx = ratio_x * (x - CANVAS_CENTER_X)

dy = ratio_y * (y - CANVAS_CENTER_Y)

return x - dx, y - dy

def shrink(x, y, ratio):

"""

抖动

:param x: 原x

:param y: 原y

:param ratio: 比例

:return: 新坐标

"""

force = -1 / (((x - CANVAS_CENTER_X) ** 2 + (y - CANVAS_CENTER_Y) ** 2) ** 0.6) # 这个参数...

dx = ratio * force * (x - CANVAS_CENTER_X)

dy = ratio * force * (y - CANVAS_CENTER_Y)

return x - dx, y - dy

def curve(p):

"""

自定义曲线函数,调整跳动周期

:param p: 参数

:return: 正弦

"""

# 可以尝试换其他的动态函数,达到更有力量的效果(贝塞尔?)

return 2 * (2 * sin(4 * p)) / (2 * pi)

class Heart:

"""

爱心类

"""

def __init__(self, generate_frame=20):

self._points = set() # 原始爱心坐标集合

self._edge_diffusion_points = set() # 边缘扩散效果点坐标集合

self._center_diffusion_points = set() # 中心扩散效果点坐标集合

self.all_points = {} # 每帧动态点坐标

self.build(2000)

self.random_halo = 1000

self.generate_frame = generate_frame

for frame in range(generate_frame):

self.calc(frame)

def build(self, number):

# 爱心

for _ in range(number):

t = random.uniform(0, 2 * pi) # 随机不到的地方造成爱心有缺口

x, y = heart_function(t)

self._points.add((x, y))

# 爱心内扩散

for _x, _y in list(self._points):

for _ in range(3):

x, y = scatter_inside(_x, _y, 0.05)

self._edge_diffusion_points.add((x, y))

# 爱心内再次扩散

point_list = list(self._points)

for _ in range(4000):

x, y = random.choice(point_list)

x, y = scatter_inside(x, y, 0.17)

self._center_diffusion_points.add((x, y))

@staticmethod

def calc_position(x, y, ratio):

# 调整缩放比例

force = 1 / (((x - CANVAS_CENTER_X) ** 2 + (y - CANVAS_CENTER_Y) ** 2) ** 0.520) # 魔法参数

dx = ratio * force * (x - CANVAS_CENTER_X) + random.randint(-1, 1)

dy = ratio * force * (y - CANVAS_CENTER_Y) + random.randint(-1, 1)

return x - dx, y - dy

def calc(self, generate_frame):

ratio = 10 * curve(generate_frame / 10 * pi) # 圆滑的周期的缩放比例

halo_radius = int(4 + 6 * (1 + curve(generate_frame / 10 * pi)))

halo_number = int(3000 + 4000 * abs(curve(generate_frame / 10 * pi) ** 2))

all_points = []

# 光环

heart_halo_point = set() # 光环的点坐标集合

for _ in range(halo_number):

t = random.uniform(0, 2 * pi) # 随机不到的地方造成爱心有缺口

x, y = heart_function(t, shrink_ratio=11.6) # 魔法参数

x, y = shrink(x, y, halo_radius)

if (x, y) not in heart_halo_point:

# 处理新的点

heart_halo_point.add((x, y))

x += random.randint(-14, 14)

y += random.randint(-14, 14)

size = random.choice((1, 2, 2))

all_points.append((x, y, size))

# 轮廓

for x, y in self._points:

x, y = self.calc_position(x, y, ratio)

size = random.randint(1, 3)

all_points.append((x, y, size))

# 内容

for x, y in self._edge_diffusion_points:

x, y = self.calc_position(x, y, ratio)

size = random.randint(1, 2)

all_points.append((x, y, size))

for x, y in self._center_diffusion_points:

x, y = self.calc_position(x, y, ratio)

size = random.randint(1, 2)

all_points.append((x, y, size))

self.all_points[generate_frame] = all_points

def render(self, render_canvas, render_frame):

for x, y, size in self.all_points[render_frame % self.generate_frame]:

render_canvas.create_rectangle(x, y, x + size, y + size, width=0, fill=HEART_COLOR)

def draw(main: Tk, render_canvas: Canvas, render_heart: Heart, render_frame=0):

render_canvas.delete('all')

render_heart.render(render_canvas, render_frame)

main.after(160, draw, main, render_canvas, render_heart, render_frame + 1)

if __name__ == '__main__':

root = Tk() # 一个Tk

canvas = Canvas(root, bg='black', height=CANVAS_HEIGHT, width=CANVAS_WIDTH)

canvas.pack()

heart = Heart() # 心

draw(root, canvas, heart) # 开始画画~

root.mainloop()

python -2

所需环境 open cv

from tkinter import *

from matplotlib import pyplot as plt

from PIL import Image

import random

import math

import numpy as np

import os

import colorsys

import cv2

from scipy.ndimage.filters import gaussian_filter

from math import sin, cos, pi, log

canvas_width = 600

canvas_height = 600

world_width = 0.05

world_heigth = 0.05

# 中间心的参数

points = None

fixed_point_size = 20000

fixed_scale_range = (4, 4.3)

min_scale = np.array([1.0, 1.0, 1.0]) * 0.9

max_scale = np.array([1.0, 1.0, 1.0]) * 0.9

min_heart_scale = -15

max_heart_scale = 16

# 外围随机心参数

random_point_szie = 7000

random_scale_range = (3.5, 3.9)

random_point_maxvar = 0.2

# 心算法参数

mid_point_ignore = 0.95

# 相机参数

camera_close_plane = 0.1

camera_position = np.array([0.0, -2.0, 0.0])

# 点的颜色

hue = 0.92

color_strength = 255

# 常用向量缓存

zero_scale = np.array([0.0, 0.0, 0.0])

unit_scale = np.array([1.0, 1.0, 1.0])

color_white = np.array([255, 255, 255])

axis_y = np.array([0.0, 1.0, 0.0])

# 渲染缓存

render_buffer = np.empty((canvas_width, canvas_height, 3), dtype=int)

strength_buffer = np.empty((canvas_width, canvas_height), dtype=float)

# 随机点文件缓存

points_file = "temp.txt"

# 渲染结果

total_frames = 30

output_dir = "./output"

# 格式

image_fmt = "jpg"

def color(value):

digit = list(map(str, range(10))) + list("ABCDEF")

string = '#'

for i in value:

a1 = i // 16

a2 = i % 16

string += digit[a1] + digit[a2]

return string

def heart_func(x, y, z, scale):

bscale = scale

bscale_half = bscale / 2

x = x * bscale - bscale_half

y = y * bscale - bscale_half

z = z * bscale - bscale_half

return (x ** 2 + 9 / 4 * (y ** 2) + z ** 2 - 1) ** 3 - (x ** 2) * (z ** 3) - 9 / 200 * (y ** 2) * (z ** 3)

def lerp_vector(a, b, ratio):

result = a.copy()

for i in range(3):

result[i] = a[i] + (b[i] - a[i]) * ratio

return result

def lerp_int(a, b, ratio):

return (int)(a + (b - a) * ratio)

def lerp_float(a, b, ratio):

return (a + (b - a) * ratio)

def distance(point):

return (point[0] ** 2 + point[1] ** 2 + point[2] ** 2) ** 0.5

def dot(a, b):

return a[0] * b[0] + a[1] * b[1] + a[2] * b[2]

def inside_rand(tense):

x = random.random()

y = -tense * math.log(x)

return y

# 生成中间心

def genPoints(pointCount, heartScales):

result = np.empty((pointCount, 3))

index = 0

while index < pointCount:

# 生成随机点

x = random.random()

y = random.random()

z = random.random()

# 扣掉心中间的点

mheartValue = heart_func(x, 0.5, z, heartScales[1])

mid_ignore = random.random()

if mheartValue < 0 and mid_ignore < mid_point_ignore:

continue

heartValue = heart_func(x, y, z, heartScales[0])

z_shrink = 0.01

sz = z - z_shrink

sheartValue = heart_func(x, y, sz, heartScales[1])

# 保留在心边上的点

if heartValue < 0 and sheartValue > 0:

result[index] = [x - 0.5, y - 0.5, z - 0.5]

# 向内扩散

len = 0.7

result[index] = result[index] * (1 - len * inside_rand(0.2))

# 重新赋予深度

newY = random.random() - 0.5

rheartValue = heart_func(result[index][0] + 0.5, newY + 0.5, result[index][2] + 0.5, heartScales[0])

if rheartValue > 0:

continue

result[index][1] = newY

# 删掉肚脐眼

dist = distance(result[index])

if dist < 0.12:

continue

index = index + 1

if index % 100 == 0:

print("{ind} generated {per}%".format(ind=index, per=((index / pointCount) * 100)))

return result

# 生成随机心

def genRandPoints(pointCount, heartScales, maxVar, ratio):

result = np.empty((pointCount, 3))

index = 0

while index < pointCount:

x = random.random()

y = random.random()

z = random.random()

mheartValue = heart_func(x, 0.5, z, heartScales[1])

mid_ignore = random.random()

if mheartValue < 0 and mid_ignore < mid_point_ignore:

continue

heartValue = heart_func(x, y, z, heartScales[0])

sheartValue = heart_func(x, y, z, heartScales[1])

if heartValue < 0 and sheartValue > 0:

result[index] = [x - 0.5, y - 0.5, z - 0.5]

dist = distance(result[index])

if dist < 0.12:

continue

len = 0.7

result[index] = result[index] * (1 - len * inside_rand(0.2))

index = index + 1

for i in range(pointCount):

var = maxVar * ratio

randScale = 1 + random.normalvariate(0, var)

result[i] = result[i] * randScale

return result

# 世界坐标到相机本地坐标

def world_2_cameraLocalSapce(world_point):

new_point = world_point.copy()

new_point[1] = new_point[1] + camera_position[1]

return new_point

# 相机本地坐标到相机空间坐标

def cameraLocal_2_cameraSpace(cameraLocalPoint):

depth = distance(cameraLocalPoint)

cx = cameraLocalPoint[0] * (camera_close_plane / cameraLocalPoint[1])

cz = -cameraLocalPoint[2] * (cx / cameraLocalPoint[0])

cameraLocalPoint[0] = cx

cameraLocalPoint[1] = cz

return cameraLocalPoint, depth

# 相机空间坐标到屏幕坐标

def camerSpace_2_screenSpace(cameraSpace):

x = cameraSpace[0]

y = cameraSpace[1]

# convert to view space

centerx = canvas_width / 2

centery = canvas_height / 2

ratiox = canvas_width / world_width

ratioy = canvas_height / world_heigth

viewx = centerx + x * ratiox

viewy = canvas_height - (centery + y * ratioy)

cameraSpace[0] = viewx

cameraSpace[1] = viewy

return cameraSpace.astype(int)

# 绘制世界坐标下的点

def draw_point(worldPoint):

cameraLocal = world_2_cameraLocalSapce(worldPoint)

cameraSpsace, depth = cameraLocal_2_cameraSpace(cameraLocal)

screeSpace = camerSpace_2_screenSpace(cameraSpsace)

draw_size = int(random.random() * 3 + 1)

draw_on_buffer(screeSpace, depth, draw_size)

# 绘制到缓存上

def draw_on_buffer(screenPos, depth, draw_size):

if draw_size == 0:

return

elif draw_size == 1:

draw_point_on_buffer(screenPos[0], screenPos[1], color_strength, depth)

elif draw_size == 2:

draw_point_on_buffer(screenPos[0], screenPos[1], color_strength, depth)

draw_point_on_buffer(screenPos[0] + 1, screenPos[1] + 1, color_strength, depth)

elif draw_size == 3:

draw_point_on_buffer(screenPos[0], screenPos[1], color_strength, depth)

draw_point_on_buffer(screenPos[0] + 1, screenPos[1] + 1, color_strength, depth)

draw_point_on_buffer(screenPos[0] + 1, screenPos[1], color_strength, depth)

elif draw_size == 4:

draw_point_on_buffer(screenPos[0], screenPos[1], color_strength, depth)

draw_point_on_buffer(screenPos[0] + 1, screenPos[1], color_strength, depth)

draw_point_on_buffer(screenPos[0], screenPos[1] + 1, color_strength, depth)

draw_point_on_buffer(screenPos[0] + 1, screenPos[1] + 1, color_strength, depth)

# 根据色调和颜色强度获取颜色

def get_color(strength):

result = None

if strength >= 1:

result = colorsys.hsv_to_rgb(hue, 2 - strength, 1)

else:

result = colorsys.hsv_to_rgb(hue, 1, strength)

r = min(result[0] * 256, 255)

g = min(result[1] * 256, 255)

b = min(result[2] * 256, 255)

return np.array((r, g, b), dtype=int)

# 可以根据深度做一些好玩的

def draw_point_on_buffer(x, y, color, depth):

if x < 0 or x >= canvas_width or y < 0 or y >= canvas_height:

return

# 混合

strength = float(color) / 255

strength_buffer[x, y] = strength_buffer[x, y] + strength

# 绘制缓存

def draw_buffer_on_canvas(output=None):

render_buffer.fill(0)

for i in range(render_buffer.shape[0]):

for j in range(render_buffer.shape[1]):

render_buffer[i, j] = get_color(strength_buffer[i, j])

im = Image.fromarray(np.uint8(render_buffer))

im = im.rotate(-90)

if output is None:

plt.imshow(im)

plt.show()

else:

im.save(output)

def paint_heart(ratio, randratio, outputFile=None):

global strength_buffer

global render_buffer

global points

# 清空缓存

strength_buffer.fill(0)

for i in range(fixed_point_size):

# 缩放

point = points[i] * lerp_vector(min_scale, max_scale, ratio)

# 球型场

dist = distance(point)

radius = 0.4

sphere_scale = radius / dist

point = point * lerp_float(0.9, sphere_scale, ratio * 0.3)

# 绘制

draw_point(point)

# 生成一组随机点

randPoints = genRandPoints(random_point_szie, random_scale_range, random_point_maxvar, randratio)

for i in range(random_point_szie):

# 绘制

draw_point(randPoints[i])

# 高斯模糊

for i in range(1):

strength_buffer = gaussian_filter(strength_buffer, sigma=0.8)

# 绘制缓存

draw_buffer_on_canvas(outputFile)

def show_images():

img = None

for i in range(total_frames):

save_name = "{name}.{fmt}".format(name=i, fmt=image_fmt)

save_path = os.path.join(output_dir, save_name)

img = cv2.imread(save_path, cv2.IMREAD_ANYCOLOR)

cv2.imshow("Img", img)

cv2.waitKey(25)

def gen_images():

global points

if not os.path.isdir(output_dir):

os.mkdir(output_dir)

# 尝试加载或生成中间心

if not os.path.exists(points_file):

print("未发现缓存点,重新生成中")

points = genPoints(fixed_point_size, fixed_scale_range)

np.savetxt(points_file, points)

else:

print("发现缓存文件,跳过生成")

points = np.loadtxt(points_file)

for i in range(total_frames):

print("正在处理图片... ", i)

frame_ratio = float(i) / (total_frames - 1)

frame_ratio = frame_ratio ** 2

ratio = math.sin(frame_ratio * math.pi) * 0.743144

randratio = math.sin(frame_ratio * math.pi * 2 + total_frames / 2)

save_name = "{name}.{fmt}".format(name=i, fmt=image_fmt)

save_path = os.path.join(output_dir, save_name)

paint_heart(ratio, randratio, save_path)

print("图片已保存至", save_path)

if __name__ == "__main__":

gen_images()

while True:

show_images()

参考文章

评论可见,请评论后查看内容,谢谢!!!
 您阅读本篇文章共花了: