概述

目标检测(Object Detection)就是一种基于目标几何和统计特征的图像分割,它将目标的分割和识别合二为一,通俗点说就是给定一张图片要精确的定位到物体所在位置,并完成对物体类别的识别。其准确性和实时性是整个系统的一项重要能力。

R-CNN的全称是Region-CNN(区域卷积神经网络),是第一个成功将深度学习应用到目标检测上的算法。R-CNN基于卷积神经网络(CNN),线性回归,和支持向量机(SVM)等算法,实现目标检测技术。

以下的代码和项目工程是引用他人的,此文只对其做一个简单的流程梳理。

这里先贴出工具脚本util.py的代码如下

# -*- coding: utf-8 -*-

"""

@date: 2020/2/29 下午7:31

@file: util.py

@author: zj

@description:

"""

import os

import numpy as np

import xmltodict

import torch

import matplotlib.pyplot as plt

def check_dir(data_dir):

if not os.path.exists(data_dir):

os.mkdir(data_dir)

def parse_car_csv(csv_dir):

csv_path = os.path.join(csv_dir, 'car.csv')

samples = np.loadtxt(csv_path, dtype='str')

return samples

def parse_xml(xml_path):

"""

解析xml文件,返回标注边界框坐标

"""

# print(xml_path)

with open(xml_path, 'rb') as f:

xml_dict = xmltodict.parse(f)

# print(xml_dict)

bndboxs = list()

objects = xml_dict['annotation']['object']

if isinstance(objects, list):

for obj in objects:

obj_name = obj['name']

difficult = int(obj['difficult'])

if 'car'.__eq__(obj_name) and difficult != 1:

bndbox = obj['bndbox']

bndboxs.append((int(bndbox['xmin']), int(bndbox['ymin']), int(bndbox['xmax']), int(bndbox['ymax'])))

elif isinstance(objects, dict):

obj_name = objects['name']

difficult = int(objects['difficult'])

if 'car'.__eq__(obj_name) and difficult != 1:

bndbox = objects['bndbox']

bndboxs.append((int(bndbox['xmin']), int(bndbox['ymin']), int(bndbox['xmax']), int(bndbox['ymax'])))

else:

pass

return np.array(bndboxs)

def iou(pred_box, target_box):

"""

计算候选建议和标注边界框的IoU

:param pred_box: 大小为[4]

:param target_box: 大小为[N, 4]

:return: [N]

"""

if len(target_box.shape) == 1:

target_box = target_box[np.newaxis, :]

xA = np.maximum(pred_box[0], target_box[:, 0])

yA = np.maximum(pred_box[1], target_box[:, 1])

xB = np.minimum(pred_box[2], target_box[:, 2])

yB = np.minimum(pred_box[3], target_box[:, 3])

# 计算交集面积

intersection = np.maximum(0.0, xB - xA) * np.maximum(0.0, yB - yA)

# 计算两个边界框面积

boxAArea = (pred_box[2] - pred_box[0]) * (pred_box[3] - pred_box[1])

boxBArea = (target_box[:, 2] - target_box[:, 0]) * (target_box[:, 3] - target_box[:, 1])

scores = intersection / (boxAArea + boxBArea - intersection)

return scores

def compute_ious(rects, bndboxs):

iou_list = list()

for rect in rects:

scores = iou(rect, bndboxs)

iou_list.append(max(scores))

return iou_list

def save_model(model, model_save_path):

# 保存最好的模型参数

check_dir('./models')

torch.save(model.state_dict(), model_save_path)

def plot_loss(loss_list):

x = list(range(len(loss_list)))

fg = plt.figure()

plt.plot(x, loss_list)

plt.title('loss')

plt.savefig('./loss.png')

数据集准备

数据集下载

运行项目中的pascal_voc.py脚本,这个脚本是下载数据集。

# -*- coding: utf-8 -*-

"""

@date: 2020/2/29 下午2:51

@file: pascal_voc.py

@author: zj

@description: 加载PASCAL VOC 2007数据集

"""

import cv2

import numpy as np

from torchvision.datasets import VOCDetection

if __name__ == '__main__':

"""

下载PASCAL VOC数据集

"""

dataset = VOCDetection('../../data', year='2007', image_set='trainval', download=True)

# img, target = dataset.__getitem__(1000)

# img = np.array(img)

#

# print(target)

# print(img.shape)

#

# cv2.imshow('img', img)

# cv2.waitKey(0)

从数据集中提取出car相关的数据

由于本文只针对汽车car进行目标检测,所以只需要car相关的数据。

执行pascal_voc_car.py脚本,脚本依次做了以下事:

①读取'../../data/VOCdevkit/VOC2007/ImageSets/Main/car_train.txt'文件和'../../data/VOCdevkit/VOC2007/ImageSets/Main/car_val.txt'文件

car_train.txt和car_val.txt文件的内容格式如下

②然后将以上文件内容分别保存到'../../data/voc_car/train/car.csv'和'../../data/voc_car/val/car.csv'中

car.csv的内容格式如下

③最后根据筛选出来的car的相关数据,从'../../data/VOCdevkit/VOC2007/Annotations/'中复制相关.xml文件到'../../data/voc_car/train/Annotations/'和'../../data/voc_car/val/Annotations/',以及从'../../data/VOCdevkit/VOC2007/JPEGImages/'中复制相关.jpg文件到'../../data/voc_car/train/JPEGImages/'和'../../data/voc_car/val/JPEGImages/'

以下是pascal_voc_car.py脚本代码

# -*- coding: utf-8 -*-

"""

@date: 2020/2/29 下午2:43

@file: pascal_voc_car.py

@author: zj

@description: 从PASCAL VOC 2007数据集中抽取类别Car。保留1/10的数目

"""

import os

import shutil

import random

import numpy as np

import xmltodict

from utils.util import check_dir

suffix_xml = '.xml'

suffix_jpeg = '.jpg'

car_train_path = '../../data/VOCdevkit/VOC2007/ImageSets/Main/car_train.txt'

car_val_path = '../../data/VOCdevkit/VOC2007/ImageSets/Main/car_val.txt'

voc_annotation_dir = '../../data/VOCdevkit/VOC2007/Annotations/'

voc_jpeg_dir = '../../data/VOCdevkit/VOC2007/JPEGImages/'

car_root_dir = '../../data/voc_car/'

def parse_train_val(data_path):

"""

提取指定类别图像

"""

samples = []

with open(data_path, 'r') as file:

lines = file.readlines()

for line in lines:

res = line.strip().split(' ')

if len(res) == 3 and int(res[2]) == 1:

samples.append(res[0])

return np.array(samples)

def sample_train_val(samples):

"""

随机采样样本,减少数据集个数(留下1/10)

"""

for name in ['train', 'val']:

dataset = samples[name]

length = len(dataset)

random_samples = random.sample(range(length), int(length / 10))

# print(random_samples)

new_dataset = dataset[random_samples]

samples[name] = new_dataset

return samples

def save_car(car_samples, data_root_dir, data_annotation_dir, data_jpeg_dir):

"""

保存类别Car的样本图片和标注文件

"""

for sample_name in car_samples:

src_annotation_path = os.path.join(voc_annotation_dir, sample_name + suffix_xml)

dst_annotation_path = os.path.join(data_annotation_dir, sample_name + suffix_xml)

shutil.copyfile(src_annotation_path, dst_annotation_path)

src_jpeg_path = os.path.join(voc_jpeg_dir, sample_name + suffix_jpeg)

dst_jpeg_path = os.path.join(data_jpeg_dir, sample_name + suffix_jpeg)

shutil.copyfile(src_jpeg_path, dst_jpeg_path)

csv_path = os.path.join(data_root_dir, 'car.csv')

np.savetxt(csv_path, np.array(car_samples), fmt='%s')

if __name__ == '__main__':

samples = {'train': parse_train_val(car_train_path), 'val': parse_train_val(car_val_path)}

print(samples)

# samples = sample_train_val(samples)

# print(samples)

check_dir(car_root_dir)

for name in ['train', 'val']:

data_root_dir = os.path.join(car_root_dir, name)

data_annotation_dir = os.path.join(data_root_dir, 'Annotations')

data_jpeg_dir = os.path.join(data_root_dir, 'JPEGImages')

check_dir(data_root_dir)

check_dir(data_annotation_dir)

check_dir(data_jpeg_dir)

save_car(samples[name], data_root_dir, data_annotation_dir, data_jpeg_dir)

print('done')

卷积神经网络微调模型

准备微调数据正负样本集

执行create_finetune_data.py脚本,这个脚本主要做了以下事

①把'../../data/voc_car/train/JPEGImages/'和'../../data/voc_car/val/JPEGImages/'中的.jpg文件复制到'../../data/finetune_car/train/JPEGImages/'和'../../data/finetune_car/val/JPEGImages/',然后又把'../../data/voc_car/train/car.csv'和'../../data/voc_car/val/car.csv'分别复制到'../../data/finetune_car/train/car.csv'和'../../data/finetune_car/val/car.csv'

②根据'../../data/finetune_car/train/car.csv'和'../../data/finetune_car/val/car.csv'文件内容分别读取'../../data/finetune_car/train/JPEGImages/'和'../../data/finetune_car/val/JPEGImages/'中的图片,并传入parse_annotation_jpeg方法

③parse_annotation_jpeg方法中,先获取候选框rects,然后从.xml文件中获取标注框bndboxs,接着计算候选框和标注框的IoU得到iou_list,遍历iou_list,选出IoU≥0.5的作为正样本,0

其文件内容格式如下

以下是create_finetune_data.py脚本代码

# -*- coding: utf-8 -*-

"""

@date: 2020/2/29 下午7:22

@file: create_finetune_data.py

@author: zj

@description: 创建微调数据集

"""

import time

import shutil

import numpy as np

import cv2

import os

import selectivesearch

from utils.util import check_dir

from utils.util import parse_car_csv

from utils.util import parse_xml

from utils.util import compute_ious

# train

# positive num: 66517

# negatie num: 464340

# val

# positive num: 64712

# negative num: 415134

def parse_annotation_jpeg(annotation_path, jpeg_path, gs):

"""

获取正负样本(注:忽略属性difficult为True的标注边界框)

正样本:候选建议与标注边界框IoU大于等于0.5

负样本:IoU大于0,小于0.5。为了进一步限制负样本数目,其大小必须大于标注框的1/5

"""

img = cv2.imread(jpeg_path)

selectivesearch.config(gs, img, strategy='q')

# 计算候选建议

rects = selectivesearch.get_rects(gs)

# 获取标注边界框

bndboxs = parse_xml(annotation_path)

# 标注框大小

maximum_bndbox_size = 0

for bndbox in bndboxs:

xmin, ymin, xmax, ymax = bndbox

bndbox_size = (ymax - ymin) * (xmax - xmin)

if bndbox_size > maximum_bndbox_size:

maximum_bndbox_size = bndbox_size

# 获取候选建议和标注边界框的IoU

iou_list = compute_ious(rects, bndboxs)

positive_list = list()

negative_list = list()

for i in range(len(iou_list)):

xmin, ymin, xmax, ymax = rects[i]

rect_size = (ymax - ymin) * (xmax - xmin)

iou_score = iou_list[i]

if iou_list[i] >= 0.5:

# 正样本

positive_list.append(rects[i])

if 0 < iou_list[i] < 0.5 and rect_size > maximum_bndbox_size / 5.0:

# 负样本

negative_list.append(rects[i])

else:

pass

return positive_list, negative_list

if __name__ == '__main__':

car_root_dir = '../../data/voc_car/'

finetune_root_dir = '../../data/finetune_car/'

check_dir(finetune_root_dir)

gs = selectivesearch.get_selective_search()

for name in ['train', 'val']:

src_root_dir = os.path.join(car_root_dir, name)

src_annotation_dir = os.path.join(src_root_dir, 'Annotations')

src_jpeg_dir = os.path.join(src_root_dir, 'JPEGImages')

dst_root_dir = os.path.join(finetune_root_dir, name)

dst_annotation_dir = os.path.join(dst_root_dir, 'Annotations')

dst_jpeg_dir = os.path.join(dst_root_dir, 'JPEGImages')

check_dir(dst_root_dir)

check_dir(dst_annotation_dir)

check_dir(dst_jpeg_dir)

total_num_positive = 0

total_num_negative = 0

samples = parse_car_csv(src_root_dir)

# 复制csv文件

src_csv_path = os.path.join(src_root_dir, 'car.csv')

dst_csv_path = os.path.join(dst_root_dir, 'car.csv')

shutil.copyfile(src_csv_path, dst_csv_path)

for sample_name in samples:

since = time.time()

src_annotation_path = os.path.join(src_annotation_dir, sample_name + '.xml')

src_jpeg_path = os.path.join(src_jpeg_dir, sample_name + '.jpg')

# 获取正负样本

positive_list, negative_list = parse_annotation_jpeg(src_annotation_path, src_jpeg_path, gs)

total_num_positive += len(positive_list)

total_num_negative += len(negative_list)

dst_annotation_positive_path = os.path.join(dst_annotation_dir, sample_name + '_1' + '.csv')

dst_annotation_negative_path = os.path.join(dst_annotation_dir, sample_name + '_0' + '.csv')

dst_jpeg_path = os.path.join(dst_jpeg_dir, sample_name + '.jpg')

# 保存图片

shutil.copyfile(src_jpeg_path, dst_jpeg_path)

# 保存正负样本标注

np.savetxt(dst_annotation_positive_path, np.array(positive_list), fmt='%d', delimiter=' ')

np.savetxt(dst_annotation_negative_path, np.array(negative_list), fmt='%d', delimiter=' ')

time_elapsed = time.time() - since

print('parse {}.png in {:.0f}m {:.0f}s'.format(sample_name, time_elapsed // 60, time_elapsed % 60))

print('%s positive num: %d' % (name, total_num_positive))

print('%s negative num: %d' % (name, total_num_negative))

print('done')

自定义微调数据集类

custom_finetune_dataset.py,该脚本不用主动执行,在训练微调模型的时候,自然会调用到,以下只说这个脚本做了什么事

①CustomFinetuneDataset类继承自Dataset

②__init__时读取'../../data/finetune_car/train/JPEGImages/'或'../../data/finetune_car/val/JPEGImages/'文件夹中的图片,读取'../../data/finetune_car/train/Annotations/'或'../../data/finetune_car/val/Annotations/'中的正负样本集,记录正样本总数self.total_positive_num,负样本总数self.total_negative_num,正样本候选框positive_rects,负样本候选框negative_rects

③__getitem__方法传入index,如果index小于正样本总数self.total_positive_num,那么返回对应正样本的图片和标签(1),否则返回对应负样本的图片和标签(0)。

以下是custom_finetune_dataset.py脚本代码

# -*- coding: utf-8 -*-

"""

@date: 2020/3/3 下午7:06

@file: custom_finetune_dataset.py

@author: zj

@description: 自定义微调数据类

"""

import numpy as np

import os

import cv2

from PIL import Image

from torch.utils.data import Dataset

from torch.utils.data import DataLoader

import torchvision.transforms as transforms

from utils.util import parse_car_csv

class CustomFinetuneDataset(Dataset):

def __init__(self, root_dir, transform=None):

samples = parse_car_csv(root_dir)

jpeg_images = [cv2.imread(os.path.join(root_dir, 'JPEGImages', sample_name + ".jpg"))

for sample_name in samples]

positive_annotations = [os.path.join(root_dir, 'Annotations', sample_name + '_1.csv')

for sample_name in samples]

negative_annotations = [os.path.join(root_dir, 'Annotations', sample_name + '_0.csv')

for sample_name in samples]

# 边界框大小

positive_sizes = list()

negative_sizes = list()

# 边界框坐标

positive_rects = list()

negative_rects = list()

for annotation_path in positive_annotations:

rects = np.loadtxt(annotation_path, dtype=int, delimiter=' ')

# 存在文件为空或者文件中仅有单行数据

if len(rects.shape) == 1:

# 是否为单行

if rects.shape[0] == 4:

positive_rects.append(rects)

positive_sizes.append(1)

else:

positive_sizes.append(0)

else:

positive_rects.extend(rects)

positive_sizes.append(len(rects))

for annotation_path in negative_annotations:

rects = np.loadtxt(annotation_path, dtype=int, delimiter=' ')

# 和正样本规则一样

if len(rects.shape) == 1:

if rects.shape[0] == 4:

negative_rects.append(rects)

negative_sizes.append(1)

else:

positive_sizes.append(0)

else:

negative_rects.extend(rects)

negative_sizes.append(len(rects))

print(positive_rects)

self.transform = transform

self.jpeg_images = jpeg_images

self.positive_sizes = positive_sizes

self.negative_sizes = negative_sizes

self.positive_rects = positive_rects

self.negative_rects = negative_rects

self.total_positive_num = int(np.sum(positive_sizes))

self.total_negative_num = int(np.sum(negative_sizes))

def __getitem__(self, index: int):

# 定位下标所属图像

image_id = len(self.jpeg_images) - 1

if index < self.total_positive_num:

# 正样本

target = 1

xmin, ymin, xmax, ymax = self.positive_rects[index]

# 寻找所属图像

for i in range(len(self.positive_sizes) - 1):

if np.sum(self.positive_sizes[:i]) <= index < np.sum(self.positive_sizes[:(i + 1)]):

image_id = i

break

image = self.jpeg_images[image_id][ymin:ymax, xmin:xmax]

else:

# 负样本

target = 0

idx = index - self.total_positive_num

xmin, ymin, xmax, ymax = self.negative_rects[idx]

# 寻找所属图像

for i in range(len(self.negative_sizes) - 1):

if np.sum(self.negative_sizes[:i]) <= idx < np.sum(self.negative_sizes[:(i + 1)]):

image_id = i

break

image = self.jpeg_images[image_id][ymin:ymax, xmin:xmax]

# print('index: %d image_id: %d target: %d image.shape: %s [xmin, ymin, xmax, ymax]: [%d, %d, %d, %d]' %

# (index, image_id, target, str(image.shape), xmin, ymin, xmax, ymax))

if self.transform:

image = self.transform(image)

return image, target

def __len__(self) -> int:

return self.total_positive_num + self.total_negative_num

def get_positive_num(self) -> int:

return self.total_positive_num

def get_negative_num(self) -> int:

return self.total_negative_num

def test(idx):

root_dir = '../../data/finetune_car/train'

train_data_set = CustomFinetuneDataset(root_dir)

print('positive num: %d' % train_data_set.get_positive_num())

print('negative num: %d' % train_data_set.get_negative_num())

print('total num: %d' % train_data_set.__len__())

# 测试id=3/66516/66517/530856

image, target = train_data_set.__getitem__(idx)

print('target: %d' % target)

image = Image.fromarray(image)

print(image)

print(type(image))

# cv2.imshow('image', image)

# cv2.waitKey(0)

def test2():

root_dir = '../../data/finetune_car/train'

transform = transforms.Compose([

transforms.ToPILImage(),

transforms.Resize((227, 227)),

transforms.ToTensor(),

transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))

])

train_data_set = CustomFinetuneDataset(root_dir, transform=transform)

image, target = train_data_set.__getitem__(530856)

print('target: %d' % target)

print('image.shape: ' + str(image.shape))

def test3():

root_dir = '../../data/finetune_car/train'

transform = transforms.Compose([

transforms.ToPILImage(),

transforms.Resize((227, 227)),

transforms.ToTensor(),

transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))

])

train_data_set = CustomFinetuneDataset(root_dir, transform=transform)

data_loader = DataLoader(train_data_set, batch_size=128, num_workers=8, drop_last=True)

inputs, targets = next(data_loader.__iter__())

print(targets)

print(inputs.shape)

if __name__ == '__main__':

# test(159622)

# test(4051)

test3()

自定义批量采样器类

custom_batch_sampler.py,该脚本也不用主动执行,在训练微调模型的时候,自然会调用到,以下只说这个脚本做了什么事

①CustomBatchSampler类继承自(Sampler)

②__init__时通过传入的正样本总数num_positive和负样本总数num_negative得出一个列表self.idx_list,并结合传入的单次正样本数batch_positive和单次负样本数batch_negative算出可迭代次数self.num_iter

③__iter__方法中循环self.num_iter次,每次循环中会对正样本随机采集self.batch_positive次index,以及对负样本随机采集self.batch_negative次index,然后打乱存入sampler_list,最后返回一个迭代器iter(sampler)

以下是custom_batch_sampler.py脚本代码

# -*- coding: utf-8 -*-

"""

@date: 2020/3/3 下午7:38

@file: custom_batch_sampler.py

@author: zj

@description: 自定义采样器

"""

import numpy as np

import random

from torch.utils.data import Sampler

from torch.utils.data import DataLoader

import torchvision.transforms as transforms

from utils.data.custom_finetune_dataset import CustomFinetuneDataset

class CustomBatchSampler(Sampler):

def __init__(self, num_positive, num_negative, batch_positive, batch_negative) -> None:

"""

2分类数据集

每次批量处理,其中batch_positive个正样本,batch_negative个负样本

@param num_positive: 正样本数目

@param num_negative: 负样本数目

@param batch_positive: 单次正样本数

@param batch_negative: 单次负样本数

"""

self.num_positive = num_positive

self.num_negative = num_negative

self.batch_positive = batch_positive

self.batch_negative = batch_negative

length = num_positive + num_negative

self.idx_list = list(range(length))

self.batch = batch_negative + batch_positive

self.num_iter = length // self.batch

def __iter__(self):

sampler_list = list()

for i in range(self.num_iter):

tmp = np.concatenate(

(random.sample(self.idx_list[:self.num_positive], self.batch_positive),

random.sample(self.idx_list[self.num_positive:], self.batch_negative))

)

random.shuffle(tmp)

sampler_list.extend(tmp)

return iter(sampler_list)

def __len__(self) -> int:

return self.num_iter * self.batch

def get_num_batch(self) -> int:

return self.num_iter

def test():

root_dir = '../../data/finetune_car/train'

train_data_set = CustomFinetuneDataset(root_dir)

train_sampler = CustomBatchSampler(train_data_set.get_positive_num(), train_data_set.get_negative_num(), 32, 96)

print('sampler len: %d' % train_sampler.__len__())

print('sampler batch num: %d' % train_sampler.get_num_batch())

first_idx_list = list(train_sampler.__iter__())[:128]

print(first_idx_list)

# 单次批量中正样本个数

print('positive batch: %d' % np.sum(np.array(first_idx_list) < 66517))

def test2():

root_dir = '../../data/finetune_car/train'

transform = transforms.Compose([

transforms.ToPILImage(),

transforms.Resize((227, 227)),

transforms.ToTensor(),

transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))

])

train_data_set = CustomFinetuneDataset(root_dir, transform=transform)

train_sampler = CustomBatchSampler(train_data_set.get_positive_num(), train_data_set.get_negative_num(), 32, 96)

data_loader = DataLoader(train_data_set, batch_size=128, sampler=train_sampler, num_workers=8, drop_last=True)

inputs, targets = next(data_loader.__iter__())

print(targets)

print(inputs.shape)

if __name__ == '__main__':

test()

训练微调模型

执行finetune.py脚本

①调用custom_finetune_dataset.py脚本和custom_batch_sampler.py脚本,得到训练数据data_loaders

②使用预训练模型AlexNet网络模型,修改分类器对象classifier的输出为2类(1类是car,一类是背景),然后定义损失函数为交叉熵损失函数,优化函数为SGD,学习率更新器为StepLR,然后开始训练,保存准确率最高的权重到'models/alexnet_car.pth'

以下是finetune.py脚本代码

# -*- coding: utf-8 -*-

"""

@date: 2020/3/1 上午9:54

@file: finetune.py

@author: zj

@description:

"""

import os

import copy

import time

import torch

import torch.nn as nn

import torch.optim as optim

from torch.utils.data import DataLoader

import torchvision.transforms as transforms

import torchvision.models as models

from torchvision.models import AlexNet_Weights

from utils.data.custom_finetune_dataset import CustomFinetuneDataset

from utils.data.custom_batch_sampler import CustomBatchSampler

from utils.util import check_dir

def load_data(data_root_dir):

transform = transforms.Compose([

transforms.ToPILImage(),

transforms.Resize((227, 227)),

transforms.RandomHorizontalFlip(),

transforms.ToTensor(),

transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))

])

data_loaders = {}

data_sizes = {}

for name in ['train', 'val']:

data_dir = os.path.join(data_root_dir, name)

data_set = CustomFinetuneDataset(data_dir, transform=transform)

data_sampler = CustomBatchSampler(data_set.get_positive_num(), data_set.get_negative_num(), 32, 96)

data_loader = DataLoader(data_set, batch_size=128, sampler=data_sampler, num_workers=8, drop_last=True)

data_loaders[name] = data_loader

data_sizes[name] = data_sampler.__len__()

return data_loaders, data_sizes

def train_model(data_loaders, model, criterion, optimizer, lr_scheduler, num_epochs=25, device=None):

since = time.time()

best_model_weights = copy.deepcopy(model.state_dict())

best_acc = 0.0

for epoch in range(num_epochs):

print('Epoch {}/{}'.format(epoch, num_epochs - 1))

print('-' * 10)

# Each epoch has a training and validation phase

for phase in ['train', 'val']:

if phase == 'train':

model.train() # Set model to training mode

else:

model.eval() # Set model to evaluate mode

running_loss = 0.0

running_corrects = 0

# Iterate over data.

for inputs, labels in data_loaders[phase]:

inputs = inputs.to(device)

labels = labels.to(device)

# zero the parameter gradients

optimizer.zero_grad()

# forward

# track history if only in train

with torch.set_grad_enabled(phase == 'train'):

outputs = model(inputs)

_, preds = torch.max(outputs, 1)

loss = criterion(outputs, labels)

# backward + optimize only if in training phase

if phase == 'train':

loss.backward()

optimizer.step()

# statistics

running_loss += loss.item() * inputs.size(0)

running_corrects += torch.sum(preds == labels.data)

if phase == 'train':

lr_scheduler.step()

epoch_loss = running_loss / data_sizes[phase]

epoch_acc = running_corrects.double() / data_sizes[phase]

print('{} Loss: {:.4f} Acc: {:.4f}'.format(

phase, epoch_loss, epoch_acc))

# deep copy the model

if phase == 'val' and epoch_acc > best_acc:

best_acc = epoch_acc

best_model_weights = copy.deepcopy(model.state_dict())

print()

time_elapsed = time.time() - since

print('Training complete in {:.0f}m {:.0f}s'.format(

time_elapsed // 60, time_elapsed % 60))

print('Best val Acc: {:4f}'.format(best_acc))

# load best model weights

model.load_state_dict(best_model_weights)

return model

if __name__ == '__main__':

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

data_loaders, data_sizes = load_data('./data/finetune_car')

model = models.alexnet(weights=AlexNet_Weights.IMAGENET1K_V1)

# print(model)

num_features = model.classifier[6].in_features

model.classifier[6] = nn.Linear(num_features, 2)

# print(model)

model = model.to(device)

criterion = nn.CrossEntropyLoss()

optimizer = optim.SGD(model.parameters(), lr=1e-3, momentum=0.9)

lr_scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)

best_model = train_model(data_loaders, model, criterion, optimizer, lr_scheduler, device=device, num_epochs=25)

# 保存最好的模型参数

check_dir('./models')

torch.save(best_model.state_dict(), 'models/alexnet_car.pth')

分类器训练

准备分类器数据集

执行create_classifier_data.py脚本

①把'../../data/finetune_car/train/JPEGImages/'和'../../data/finetune_car/val/JPEGImages/'中的.jpg文件复制到'../../data/classifier_car/train/JPEGImages/'和'../../data/classifier_car/val/JPEGImages/',然后又把'../../data/finetune_car/train/car.csv'和'../../data/finetune_car/val/car.csv'分别复制到'../../data/classifier_car/train/car.csv'和'../../data/classifier_car/val/car.csv'

②根据'../../data/classifier_car/train/car.csv'和'../../data/classifier_car/val/car.csv'文件内容分别读取'../../data/classifier_car/train/JPEGImages/'和'../../data/classifier_car/val/JPEGImages/'中的图片,并传入parse_annotation_jpeg方法

③parse_annotation_jpeg方法中,先获取候选框rects,然后从.xml文件中获取标注框bndboxs,接着计算候选框和标注框的IoU得到iou_list,遍历iou_list,选出0

以下是create_classifier_data.py脚本代码

# -*- coding: utf-8 -*-

"""

@date: 2020/3/1 下午7:17

@file: create_classifier_data.py

@author: zj

@description: 创建分类器数据集

"""

import random

import numpy as np

import shutil

import time

import cv2

import os

import xmltodict

import selectivesearch

from utils.util import check_dir

from utils.util import parse_car_csv

from utils.util import parse_xml

from utils.util import iou

from utils.util import compute_ious

# train

# positive num: 625

# negative num: 366028

# val

# positive num: 625

# negative num: 321474

def parse_annotation_jpeg(annotation_path, jpeg_path, gs):

"""

获取正负样本(注:忽略属性difficult为True的标注边界框)

正样本:标注边界框

负样本:IoU大于0,小于等于0.3。为了进一步限制负样本数目,其大小必须大于标注框的1/5

"""

img = cv2.imread(jpeg_path)

selectivesearch.config(gs, img, strategy='q')

# 计算候选建议

rects = selectivesearch.get_rects(gs)

# 获取标注边界框

bndboxs = parse_xml(annotation_path)

# 标注框大小

maximum_bndbox_size = 0

for bndbox in bndboxs:

xmin, ymin, xmax, ymax = bndbox

bndbox_size = (ymax - ymin) * (xmax - xmin)

if bndbox_size > maximum_bndbox_size:

maximum_bndbox_size = bndbox_size

# 获取候选建议和标注边界框的IoU

iou_list = compute_ious(rects, bndboxs)

positive_list = list()

negative_list = list()

for i in range(len(iou_list)):

xmin, ymin, xmax, ymax = rects[i]

rect_size = (ymax - ymin) * (xmax - xmin)

iou_score = iou_list[i]

if 0 < iou_score <= 0.3 and rect_size > maximum_bndbox_size / 5.0:

# 负样本

negative_list.append(rects[i])

else:

pass

return bndboxs, negative_list

if __name__ == '__main__':

car_root_dir = '../../data/voc_car/'

classifier_root_dir = '../../data/classifier_car/'

check_dir(classifier_root_dir)

gs = selectivesearch.get_selective_search()

for name in ['train', 'val']:

src_root_dir = os.path.join(car_root_dir, name)

src_annotation_dir = os.path.join(src_root_dir, 'Annotations')

src_jpeg_dir = os.path.join(src_root_dir, 'JPEGImages')

dst_root_dir = os.path.join(classifier_root_dir, name)

dst_annotation_dir = os.path.join(dst_root_dir, 'Annotations')

dst_jpeg_dir = os.path.join(dst_root_dir, 'JPEGImages')

check_dir(dst_root_dir)

check_dir(dst_annotation_dir)

check_dir(dst_jpeg_dir)

total_num_positive = 0

total_num_negative = 0

samples = parse_car_csv(src_root_dir)

# 复制csv文件

src_csv_path = os.path.join(src_root_dir, 'car.csv')

dst_csv_path = os.path.join(dst_root_dir, 'car.csv')

shutil.copyfile(src_csv_path, dst_csv_path)

for sample_name in samples:

since = time.time()

src_annotation_path = os.path.join(src_annotation_dir, sample_name + '.xml')

src_jpeg_path = os.path.join(src_jpeg_dir, sample_name + '.jpg')

# 获取正负样本

positive_list, negative_list = parse_annotation_jpeg(src_annotation_path, src_jpeg_path, gs)

total_num_positive += len(positive_list)

total_num_negative += len(negative_list)

dst_annotation_positive_path = os.path.join(dst_annotation_dir, sample_name + '_1' + '.csv')

dst_annotation_negative_path = os.path.join(dst_annotation_dir, sample_name + '_0' + '.csv')

dst_jpeg_path = os.path.join(dst_jpeg_dir, sample_name + '.jpg')

# 保存图片

shutil.copyfile(src_jpeg_path, dst_jpeg_path)

# 保存正负样本标注

np.savetxt(dst_annotation_positive_path, np.array(positive_list), fmt='%d', delimiter=' ')

np.savetxt(dst_annotation_negative_path, np.array(negative_list), fmt='%d', delimiter=' ')

time_elapsed = time.time() - since

print('parse {}.png in {:.0f}m {:.0f}s'.format(sample_name, time_elapsed // 60, time_elapsed % 60))

print('%s positive num: %d' % (name, total_num_positive))

print('%s negative num: %d' % (name, total_num_negative))

print('done')

自定义分类器数据集类

custom_classifier_dataset.py,该脚本不用主动执行,在训练分类器模型的时候,自然会调用到,以下只说这个脚本做了什么事

①CustomClassifierDataset类继承自Dataset

②__init__时读取'../../data/classifier_car/train/JPEGImages/'或'../../data/classifier_car/val/JPEGImages/'文件夹中的图片,读取'../../data/classifier_car/train/Annotations/'或'../../data/classifier_car/val/Annotations/'中的正负样本集,记录正样本列表self.positive_list,负样本总数self.negative_list,正样本候选框positive_rects,负样本候选框negative_rects

③__getitem__方法传入index,如果index小于正样本总数len(self.positive_list),那么返回对应正样本的图片和标签(1),否则返回对应负样本的图片和标签(0)。

以下是custom_classifier_dataset.py脚本代码

# -*- coding: utf-8 -*-

"""

@date: 2020/3/4 下午4:00

@file: custom_classifier_dataset.py

@author: zj

@description: 分类器数据集类,可进行正负样本集替换,适用于hard negative mining操作

"""

import numpy as np

import os

import cv2

from PIL import Image

from torch.utils.data import Dataset

from torch.utils.data import DataLoader

import torchvision.transforms as transforms

from utils.util import parse_car_csv

class CustomClassifierDataset(Dataset):

def __init__(self, root_dir, transform=None):

samples = parse_car_csv(root_dir)

jpeg_images = list()

positive_list = list()

negative_list = list()

for idx in range(len(samples)):

sample_name = samples[idx]

jpeg_images.append(cv2.imread(os.path.join(root_dir, 'JPEGImages', sample_name + ".jpg")))

positive_annotation_path = os.path.join(root_dir, 'Annotations', sample_name + '_1.csv')

positive_annotations = np.loadtxt(positive_annotation_path, dtype=int, delimiter=' ')

# 考虑csv文件为空或者仅包含单个标注框

if len(positive_annotations.shape) == 1:

# 单个标注框坐标

if positive_annotations.shape[0] == 4:

positive_dict = dict()

positive_dict['rect'] = positive_annotations

positive_dict['image_id'] = idx

# positive_dict['image_name'] = sample_name

positive_list.append(positive_dict)

else:

for positive_annotation in positive_annotations:

positive_dict = dict()

positive_dict['rect'] = positive_annotation

positive_dict['image_id'] = idx

# positive_dict['image_name'] = sample_name

positive_list.append(positive_dict)

negative_annotation_path = os.path.join(root_dir, 'Annotations', sample_name + '_0.csv')

negative_annotations = np.loadtxt(negative_annotation_path, dtype=int, delimiter=' ')

# 考虑csv文件为空或者仅包含单个标注框

if len(negative_annotations.shape) == 1:

# 单个标注框坐标

if negative_annotations.shape[0] == 4:

negative_dict = dict()

negative_dict['rect'] = negative_annotations

negative_dict['image_id'] = idx

# negative_dict['image_name'] = sample_name

negative_list.append(negative_dict)

else:

for negative_annotation in negative_annotations:

negative_dict = dict()

negative_dict['rect'] = negative_annotation

negative_dict['image_id'] = idx

# negative_dict['image_name'] = sample_name

negative_list.append(negative_dict)

self.transform = transform

self.jpeg_images = jpeg_images

self.positive_list = positive_list

self.negative_list = negative_list

def __getitem__(self, index: int):

# 定位下标所属图像

if index < len(self.positive_list):

# 正样本

target = 1

positive_dict = self.positive_list[index]

xmin, ymin, xmax, ymax = positive_dict['rect']

image_id = positive_dict['image_id']

image = self.jpeg_images[image_id][ymin:ymax, xmin:xmax]

cache_dict = positive_dict

else:

# 负样本

target = 0

idx = index - len(self.positive_list)

negative_dict = self.negative_list[idx]

xmin, ymin, xmax, ymax = negative_dict['rect']

image_id = negative_dict['image_id']

image = self.jpeg_images[image_id][ymin:ymax, xmin:xmax]

cache_dict = negative_dict

# print('index: %d image_id: %d target: %d image.shape: %s [xmin, ymin, xmax, ymax]: [%d, %d, %d, %d]' %

# (index, image_id, target, str(image.shape), xmin, ymin, xmax, ymax))

if self.transform:

image = self.transform(image)

return image, target, cache_dict

def __len__(self) -> int:

return len(self.positive_list) + len(self.negative_list)

def get_transform(self):

return self.transform

def get_jpeg_images(self) -> list:

return self.jpeg_images

def get_positive_num(self) -> int:

return len(self.positive_list)

def get_negative_num(self) -> int:

return len(self.negative_list)

def get_positives(self) -> list:

return self.positive_list

def get_negatives(self) -> list:

return self.negative_list

# 用于hard negative mining

# 替换负样本

def set_negative_list(self, negative_list):

self.negative_list = negative_list

def test(idx):

root_dir = '../../data/classifier_car/val'

train_data_set = CustomClassifierDataset(root_dir)

print('positive num: %d' % train_data_set.get_positive_num())

print('negative num: %d' % train_data_set.get_negative_num())

print('total num: %d' % train_data_set.__len__())

# 测试id=3/66516/66517/530856

image, target, cache_dict = train_data_set.__getitem__(idx)

print('target: %d' % target)

print('dict: ' + str(cache_dict))

image = Image.fromarray(image)

print(image)

print(type(image))

# cv2.imshow('image', image)

# cv2.waitKey(0)

def test2():

root_dir = '../../data/classifier_car/train'

transform = transforms.Compose([

transforms.ToPILImage(),

transforms.Resize((227, 227)),

transforms.ToTensor(),

transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))

])

train_data_set = CustomClassifierDataset(root_dir, transform=transform)

image, target, cache_dict = train_data_set.__getitem__(230856)

print('target: %d' % target)

print('dict: ' + str(cache_dict))

print('image.shape: ' + str(image.shape))

def test3():

root_dir = '../../data/classifier_car/train'

transform = transforms.Compose([

transforms.ToPILImage(),

transforms.Resize((227, 227)),

transforms.ToTensor(),

transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))

])

train_data_set = CustomClassifierDataset(root_dir, transform=transform)

data_loader = DataLoader(train_data_set, batch_size=128, num_workers=8, drop_last=True)

inputs, targets, cache_dicts = next(data_loader.__iter__())

print(targets)

print(inputs.shape)

if __name__ == '__main__':

# test(159622)

# test(4051)

test(24768)

# test2()

# test3()

自定义批量采样器类

同"卷积神经网络微调模型"中的"自定义批量采样器类",在训练分类器模型的时候,自然会调用到

训练分类器

执行linear_svm.py脚本

①调用custom_classifier_dataset.py脚本和custom_batch_sampler.py脚本,得到训练数据data_loaders

②使用AlexNet网络模型,修改分类器对象classifier的输出为2类(1类是car,一类是背景),加载之前微调训练的权重alexnet_car.pth,并设置参数冻结,然后再添加一个全连接层作为svm分类器,定义损失函数为折页损失函数,优化函数为SGD,学习率更新器为StepLR,然后开始训练,保存准确率最高的权重到'models/best_linear_svm_alexnet_car.pth'

以下是linear_svm.py脚本代码

# -*- coding: utf-8 -*-

"""

@date: 2020/3/1 下午2:38

@file: linear_svm.py

@author: zj

@description:

"""

import time

import copy

import os

import random

import numpy as np

import torch

import torch.nn as nn

import torch.optim as optim

from torch.utils.data import DataLoader

import torchvision.transforms as transforms

from torchvision.models import alexnet

from utils.data.custom_classifier_dataset import CustomClassifierDataset

from utils.data.custom_hard_negative_mining_dataset import CustomHardNegativeMiningDataset

from utils.data.custom_batch_sampler import CustomBatchSampler

from utils.util import check_dir

from utils.util import save_model

batch_positive = 32

batch_negative = 96

batch_total = 128

def load_data(data_root_dir):

transform = transforms.Compose([

transforms.ToPILImage(),

transforms.Resize((227, 227)),

transforms.RandomHorizontalFlip(),

transforms.ToTensor(),

transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))

])

data_loaders = {}

data_sizes = {}

remain_negative_list = list()

for name in ['train', 'val']:

data_dir = os.path.join(data_root_dir, name)

data_set = CustomClassifierDataset(data_dir, transform=transform)

if name == 'train':

"""

使用hard negative mining方式

初始正负样本比例为1:1。由于正样本数远小于负样本,所以以正样本数为基准,在负样本集中随机提取同样数目负样本作为初始负样本集

"""

positive_list = data_set.get_positives()

negative_list = data_set.get_negatives()

init_negative_idxs = random.sample(range(len(negative_list)), len(positive_list))

init_negative_list = [negative_list[idx] for idx in range(len(negative_list)) if idx in init_negative_idxs]

remain_negative_list = [negative_list[idx] for idx in range(len(negative_list))

if idx not in init_negative_idxs]

data_set.set_negative_list(init_negative_list)

data_loaders['remain'] = remain_negative_list

sampler = CustomBatchSampler(data_set.get_positive_num(), data_set.get_negative_num(),

batch_positive, batch_negative)

data_loader = DataLoader(data_set, batch_size=batch_total, sampler=sampler, num_workers=8, drop_last=True)

data_loaders[name] = data_loader

data_sizes[name] = len(sampler)

return data_loaders, data_sizes

def hinge_loss(outputs, labels):

"""

折页损失计算

:param outputs: 大小为(N, num_classes)

:param labels: 大小为(N)

:return: 损失值

"""

num_labels = len(labels)

corrects = outputs[range(num_labels), labels].unsqueeze(0).T

# 最大间隔

margin = 1.0

margins = outputs - corrects + margin

loss = torch.sum(torch.max(margins, 1)[0]) / len(labels)

# # 正则化强度

# reg = 1e-3

# loss += reg * torch.sum(weight ** 2)

return loss

def add_hard_negatives(hard_negative_list, negative_list, add_negative_list):

for item in hard_negative_list:

if len(add_negative_list) == 0:

# 第一次添加负样本

negative_list.append(item)

add_negative_list.append(list(item['rect']))

if list(item['rect']) not in add_negative_list:

negative_list.append(item)

add_negative_list.append(list(item['rect']))

def get_hard_negatives(preds, cache_dicts):

fp_mask = preds == 1

tn_mask = preds == 0

fp_rects = cache_dicts['rect'][fp_mask].numpy()

fp_image_ids = cache_dicts['image_id'][fp_mask].numpy()

tn_rects = cache_dicts['rect'][tn_mask].numpy()

tn_image_ids = cache_dicts['image_id'][tn_mask].numpy()

hard_negative_list = [{'rect': fp_rects[idx], 'image_id': fp_image_ids[idx]} for idx in range(len(fp_rects))]

easy_negatie_list = [{'rect': tn_rects[idx], 'image_id': tn_image_ids[idx]} for idx in range(len(tn_rects))]

return hard_negative_list, easy_negatie_list

def train_model(data_loaders, model, criterion, optimizer, lr_scheduler, num_epochs=25, device=None):

since = time.time()

best_model_weights = copy.deepcopy(model.state_dict())

best_acc = 0.0

for epoch in range(num_epochs):

print('Epoch {}/{}'.format(epoch, num_epochs - 1))

print('-' * 10)

# Each epoch has a training and validation phase

for phase in ['train', 'val']:

if phase == 'train':

model.train() # Set model to training mode

else:

model.eval() # Set model to evaluate mode

running_loss = 0.0

running_corrects = 0

# 输出正负样本数

data_set = data_loaders[phase].dataset

print('{} - positive_num: {} - negative_num: {} - data size: {}'.format(

phase, data_set.get_positive_num(), data_set.get_negative_num(), data_sizes[phase]))

# Iterate over data.

for inputs, labels, cache_dicts in data_loaders[phase]:

inputs = inputs.to(device)

labels = labels.to(device)

# zero the parameter gradients

optimizer.zero_grad()

# forward

# track history if only in train

with torch.set_grad_enabled(phase == 'train'):

outputs = model(inputs)

# print(outputs.shape)

_, preds = torch.max(outputs, 1)

loss = criterion(outputs, labels)

# backward + optimize only if in training phase

if phase == 'train':

loss.backward()

optimizer.step()

# statistics

running_loss += loss.item() * inputs.size(0)

running_corrects += torch.sum(preds == labels.data)

if phase == 'train':

lr_scheduler.step()

epoch_loss = running_loss / data_sizes[phase]

epoch_acc = running_corrects.double() / data_sizes[phase]

print('{} Loss: {:.4f} Acc: {:.4f}'.format(

phase, epoch_loss, epoch_acc))

# deep copy the model

if phase == 'val' and epoch_acc > best_acc:

best_acc = epoch_acc

best_model_weights = copy.deepcopy(model.state_dict())

# 每一轮训练完成后,测试剩余负样本集,进行hard negative mining

train_dataset = data_loaders['train'].dataset

remain_negative_list = data_loaders['remain']

jpeg_images = train_dataset.get_jpeg_images()

transform = train_dataset.get_transform()

with torch.set_grad_enabled(False):

remain_dataset = CustomHardNegativeMiningDataset(remain_negative_list, jpeg_images, transform=transform)

remain_data_loader = DataLoader(remain_dataset, batch_size=batch_total, num_workers=8, drop_last=True)

# 获取训练数据集的负样本集

negative_list = train_dataset.get_negatives()

# 记录后续增加的负样本

add_negative_list = data_loaders.get('add_negative', [])

running_corrects = 0

# Iterate over data.

for inputs, labels, cache_dicts in remain_data_loader:

inputs = inputs.to(device)

labels = labels.to(device)

# zero the parameter gradients

optimizer.zero_grad()

outputs = model(inputs)

# print(outputs.shape)

_, preds = torch.max(outputs, 1)

running_corrects += torch.sum(preds == labels.data)

hard_negative_list, easy_neagtive_list = get_hard_negatives(preds.cpu().numpy(), cache_dicts)

add_hard_negatives(hard_negative_list, negative_list, add_negative_list)

remain_acc = running_corrects.double() / len(remain_negative_list)

print('remain negative size: {}, acc: {:.4f}'.format(len(remain_negative_list), remain_acc))

# 训练完成后,重置负样本,进行hard negatives mining

train_dataset.set_negative_list(negative_list)

tmp_sampler = CustomBatchSampler(train_dataset.get_positive_num(), train_dataset.get_negative_num(),

batch_positive, batch_negative)

data_loaders['train'] = DataLoader(train_dataset, batch_size=batch_total, sampler=tmp_sampler,

num_workers=8, drop_last=True)

data_loaders['add_negative'] = add_negative_list

# 重置数据集大小

data_sizes['train'] = len(tmp_sampler)

# 每训练一轮就保存

save_model(model, 'models/linear_svm_alexnet_car_%d.pth' % epoch)

time_elapsed = time.time() - since

print('Training complete in {:.0f}m {:.0f}s'.format(

time_elapsed // 60, time_elapsed % 60))

print('Best val Acc: {:4f}'.format(best_acc))

# load best model weights

model.load_state_dict(best_model_weights)

return model

if __name__ == '__main__':

device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

# device = 'cpu'

data_loaders, data_sizes = load_data('./data/classifier_car')

# 加载CNN模型

model_path = './models/alexnet_car.pth'

model = alexnet()

num_classes = 2

num_features = model.classifier[6].in_features

model.classifier[6] = nn.Linear(num_features, num_classes)

model.load_state_dict(torch.load(model_path))

model.eval()

# 固定特征提取

for param in model.parameters():

param.requires_grad = False

# 创建SVM分类器

model.classifier[6] = nn.Linear(num_features, num_classes)

# print(model)

model = model.to(device)

criterion = hinge_loss

# 由于初始训练集数量很少,所以降低学习率

optimizer = optim.SGD(model.parameters(), lr=1e-4, momentum=0.9)

# 共训练10轮,每隔4论减少一次学习率

lr_schduler = optim.lr_scheduler.StepLR(optimizer, step_size=4, gamma=0.1)

best_model = train_model(data_loaders, model, criterion, optimizer, lr_schduler, num_epochs=10, device=device)

# 保存最好的模型参数

save_model(best_model, 'models/best_linear_svm_alexnet_car.pth')

边界框回归训练

准备边界框回归数据集

执行create_bbox_regression_data.py脚本

①读取'../../data/voc_car/train/Annotations/'中的标注框信息存入bndboxs和'../../data/finetune_car/train/Annotations/'中的正样本数据存入positive_bndboxes,计算标注框和正样本数据的IoU,针对IoU>0.6的正样本数据,保存其到'../../data/bbox_regression/positive/'中,并保存对应的图片到'../../data/bbox_regression/JPEGImages/'中,保存对应的标注框信息到'../../data/bbox_regression/bndboxs/'中,保存对应的图片名到'../../data/bbox_regression/car.csv'中

以下是create_bbox_regression_data.py脚本代码

# -*- coding: utf-8 -*-

"""

@date: 2020/4/3 下午7:19

@file: create_bbox_regression_data.py

@author: zj

@description: 创建边界框回归数据集

"""

import os

import shutil

import numpy as np

import utils.util as util

# 正样本边界框数目:37222

if __name__ == '__main__':

"""

从voc_car/train目录中提取标注边界框坐标

从finetune_car/train目录中提取训练集正样本坐标(IoU>=0.5),进一步提取IoU>0.6的边界框

数据集保存在bbox_car目录下

"""

voc_car_train_dir = '../../data/voc_car/train'

# ground truth

gt_annotation_dir = os.path.join(voc_car_train_dir, 'Annotations')

jpeg_dir = os.path.join(voc_car_train_dir, 'JPEGImages')

classifier_car_train_dir = '../../data/finetune_car/train'

# positive

positive_annotation_dir = os.path.join(classifier_car_train_dir, 'Annotations')

dst_root_dir = '../../data/bbox_regression/'

dst_jpeg_dir = os.path.join(dst_root_dir, 'JPEGImages')

dst_bndbox_dir = os.path.join(dst_root_dir, 'bndboxs')

dst_positive_dir = os.path.join(dst_root_dir, 'positive')

util.check_dir(dst_root_dir)

util.check_dir(dst_jpeg_dir)

util.check_dir(dst_bndbox_dir)

util.check_dir(dst_positive_dir)

samples = util.parse_car_csv(voc_car_train_dir)

res_samples = list()

total_positive_num = 0

for sample_name in samples:

# 提取正样本边界框坐标(IoU>=0.5)

positive_annotation_path = os.path.join(positive_annotation_dir, sample_name + '_1.csv')

positive_bndboxes = np.loadtxt(positive_annotation_path, dtype=int, delimiter=' ')

# 提取标注边界框

gt_annotation_path = os.path.join(gt_annotation_dir, sample_name + '.xml')

bndboxs = util.parse_xml(gt_annotation_path)

# 计算符合条件(IoU>0.6)的候选建议

positive_list = list()

if len(positive_bndboxes.shape) == 1 and len(positive_bndboxes) != 0:

scores = util.iou(positive_bndboxes, bndboxs)

if np.max(scores) > 0.6:

positive_list.append(positive_bndboxes)

elif len(positive_bndboxes.shape) == 2:

for positive_bndboxe in positive_bndboxes:

scores = util.iou(positive_bndboxe, bndboxs)

if np.max(scores) > 0.6:

positive_list.append(positive_bndboxe)

else:

pass

# 如果存在正样本边界框(IoU>0.6),那么保存相应的图片以及标注边界框

if len(positive_list) > 0:

# 保存图片

jpeg_path = os.path.join(jpeg_dir, sample_name + ".jpg")

dst_jpeg_path = os.path.join(dst_jpeg_dir, sample_name + ".jpg")

shutil.copyfile(jpeg_path, dst_jpeg_path)

# 保存标注边界框

dst_bndbox_path = os.path.join(dst_bndbox_dir, sample_name + ".csv")

np.savetxt(dst_bndbox_path, bndboxs, fmt='%s', delimiter=' ')

# 保存正样本边界框

dst_positive_path = os.path.join(dst_positive_dir, sample_name + ".csv")

np.savetxt(dst_positive_path, np.array(positive_list), fmt='%s', delimiter=' ')

total_positive_num += len(positive_list)

res_samples.append(sample_name)

print('save {} done'.format(sample_name))

else:

print('-------- {} 不符合条件'.format(sample_name))

dst_csv_path = os.path.join(dst_root_dir, 'car.csv')

np.savetxt(dst_csv_path, res_samples, fmt='%s', delimiter=' ')

print('total positive num: {}'.format(total_positive_num))

print('done')

自定义边界框回归训练数据集类

custom_bbox_regression_dataset.py,该脚本不用主动执行,在训练分类器模型的时候,自然会调用到,以下只说这个脚本做了什么事

①BBoxRegressionDataset类继承自Dataset

②__init__时读取'../../data/bbox_regression/JPEGImages/'文件夹中的图片,存入self.jpeg_list,又读取'../../data/bbox_regression/bndboxs/'中的标注框信息和'../../data/bbox_regression/positive/'中的正样本数据并都存入self.box_list

③__getitem__方法计算并返回图片和相对坐标差

以下是custom_bbox_regression_dataset.py脚本代码

# -*- coding: utf-8 -*-

"""

@date: 2020/4/3 下午8:07

@file: custom_bbox_regression_dataset.py

@author: zj

@description:

"""

import os

import cv2

import numpy as np

import torch

import torchvision.transforms as transforms

from torch.utils.data import Dataset

from torch.utils.data import DataLoader

import utils.util as util

class BBoxRegressionDataset(Dataset):

def __init__(self, root_dir, transform=None):

super(BBoxRegressionDataset, self).__init__()

self.transform = transform

samples = util.parse_car_csv(root_dir)

jpeg_list = list()

# 保存{'image_id': ?, 'positive': ?, 'bndbox': ?}

box_list = list()

for i in range(len(samples)):

sample_name = samples[i]

jpeg_path = os.path.join(root_dir, 'JPEGImages', sample_name + '.jpg')

bndbox_path = os.path.join(root_dir, 'bndboxs', sample_name + '.csv')

positive_path = os.path.join(root_dir, 'positive', sample_name + '.csv')

jpeg_list.append(cv2.imread(jpeg_path))

bndboxes = np.loadtxt(bndbox_path, dtype=int, delimiter=' ')

positives = np.loadtxt(positive_path, dtype=int, delimiter=' ')

if len(positives.shape) == 1:

bndbox = self.get_bndbox(bndboxes, positives)

box_list.append({'image_id': i, 'positive': positives, 'bndbox': bndbox})

else:

for positive in positives:

bndbox = self.get_bndbox(bndboxes, positive)

box_list.append({'image_id': i, 'positive': positive, 'bndbox': bndbox})

self.jpeg_list = jpeg_list

self.box_list = box_list

def __getitem__(self, index: int):

assert index < self.__len__(), '数据集大小为%d,当前输入下标为%d' % (self.__len__(), index)

box_dict = self.box_list[index]

image_id = box_dict['image_id']

positive = box_dict['positive']

bndbox = box_dict['bndbox']

# 获取预测图像

jpeg_img = self.jpeg_list[image_id]

xmin, ymin, xmax, ymax = positive

image = jpeg_img[ymin:ymax, xmin:xmax]

if self.transform:

image = self.transform(image)

# 计算P/G的x/y/w/h

target = dict()

p_w = xmax - xmin

p_h = ymax - ymin

p_x = xmin + p_w / 2

p_y = ymin + p_h / 2

xmin, ymin, xmax, ymax = bndbox

g_w = xmax - xmin

g_h = ymax - ymin

g_x = xmin + g_w / 2

g_y = ymin + g_h / 2

# 计算t

t_x = (g_x - p_x) / p_w

t_y = (g_y - p_y) / p_h

t_w = np.log(g_w / p_w)

t_h = np.log(g_h / p_h)

return image, np.array((t_x, t_y, t_w, t_h))

def __len__(self):

return len(self.box_list)

def get_bndbox(self, bndboxes, positive):

"""

返回和positive的IoU最大的标注边界框

:param bndboxes: 大小为[N, 4]或者[4]

:param positive: 大小为[4]

:return: [4]

"""

if len(bndboxes.shape) == 1:

# 只有一个标注边界框,直接返回即可

return bndboxes

else:

scores = util.iou(positive, bndboxes)

return bndboxes[np.argmax(scores)]

def test():

"""

创建数据集类实例

"""

transform = transforms.Compose([

transforms.ToPILImage(),

transforms.Resize((227, 227)),

transforms.RandomHorizontalFlip(),

transforms.ToTensor(),

transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))

])

data_root_dir = '../../data/bbox_regression'

data_set = BBoxRegressionDataset(data_root_dir, transform=transform)

print(data_set.__len__())

image, target = data_set.__getitem__(10)

print(image.shape)

print(target)

print(target.dtype)

def test2():

"""

测试DataLoader使用

"""

transform = transforms.Compose([

transforms.ToPILImage(),

transforms.Resize((227, 227)),

transforms.RandomHorizontalFlip(),

transforms.ToTensor(),

transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))

])

data_root_dir = '../../data/bbox_regression'

data_set = BBoxRegressionDataset(data_root_dir, transform=transform)

data_loader = DataLoader(data_set, batch_size=128, shuffle=True, num_workers=8)

items = next(data_loader.__iter__())

datas, targets = items

print(datas.shape)

print(targets.shape)

print(targets.dtype)

if __name__ == '__main__':

test()

# test2()

训练边界框回归

执行bbox_regression.py脚本

①调用custom_bbox_regression_dataset.py脚本,得到训练数据data_loader

②使用AlexNet网络模型,修改分类器对象classifier的输出为2类(1类是car,一类是背景),加载权重best_linear_svm_alexnet_car.pth,并设置参数冻结,然后再添加一个线性层作为全连接层,定义损失函数为均方误差损失函数,优化函数为SGD,学习率更新器为StepLR,然后开始训练,保存模型到'models/bbox_regression_%d.pth'

以下是bbox_regression.py脚本代码

# -*- coding: utf-8 -*-

"""

@date: 2020/4/3 下午6:55

@file: bbox_regression.py

@author: zj

@description: 边界框回归训练

"""

import os

import copy

import time

import torch

import torch.nn as nn

import torch.optim as optim

from torch.utils.data import DataLoader

import torchvision.transforms as transforms

from torchvision.models import AlexNet

from utils.data.custom_bbox_regression_dataset import BBoxRegressionDataset

import utils.util as util

def load_data(data_root_dir):

transform = transforms.Compose([

transforms.ToPILImage(),

transforms.Resize((227, 227)),

transforms.RandomHorizontalFlip(),

transforms.ToTensor(),

transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))

])

data_set = BBoxRegressionDataset(data_root_dir, transform=transform)

data_loader = DataLoader(data_set, batch_size=128, shuffle=True, num_workers=8)

return data_loader

def train_model(data_loader, feature_model, model, criterion, optimizer, lr_scheduler, num_epochs=25, device=None):

since = time.time()

model.train() # Set model to training mode

loss_list = list()

for epoch in range(num_epochs):

print('Epoch {}/{}'.format(epoch, num_epochs - 1))

print('-' * 10)

running_loss = 0.0

# Iterate over data.

for inputs, targets in data_loader:

inputs = inputs.to(device)

targets = targets.float().to(device)

features = feature_model.features(inputs)

features = torch.flatten(features, 1)

# zero the parameter gradients

optimizer.zero_grad()

# forward

outputs = model(features)

loss = criterion(outputs, targets)

loss.backward()

optimizer.step()

# statistics

running_loss += loss.item() * inputs.size(0)

lr_scheduler.step()

epoch_loss = running_loss / data_loader.dataset.__len__()

loss_list.append(epoch_loss)

print('{} Loss: {:.4f}'.format(epoch, epoch_loss))

# 每训练一轮就保存

util.save_model(model, './models/bbox_regression_%d.pth' % epoch)

print()

time_elapsed = time.time() - since

print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))

return loss_list

def get_model(device=None):

# 加载CNN模型

model = AlexNet(num_classes=2)

model.load_state_dict(torch.load('./models/best_linear_svm_alexnet_car.pth'))

model.eval()

# 取消梯度追踪

for param in model.parameters():

param.requires_grad = False

if device:

model = model.to(device)

return model

if __name__ == '__main__':

data_loader = load_data('./data/bbox_regression')

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

feature_model = get_model(device)

# AlexNet最后一个池化层计算得到256*6*6输出

in_features = 256 * 6 * 6

out_features = 4

model = nn.Linear(in_features, out_features)

model.to(device)

criterion = nn.MSELoss()

optimizer = optim.Adam(model.parameters(), lr=1e-4, weight_decay=1e-4)

lr_scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1)

loss_list = train_model(data_loader, feature_model, model, criterion, optimizer, lr_scheduler, device=device,

num_epochs=12)

util.plot_loss(loss_list)

汽车car目标检测器实现

读取图片,先检测图片中是否有汽车,然后使用非极大值抑制(NMS)算法消除冗余边界框,最后输出目标检测结果,如下图

工程下载

pytorch-r-cnn工程文件

好文链接

评论可见,请评论后查看内容,谢谢!!!
 您阅读本篇文章共花了: