三、功能描述 

3.1 基本功能描述

1)通过读取DS1302 RTC芯片,获取时间数据;

2)通过EEPROM实现数据记录功能;

3)通过LED指示灯完成试题要求的状态指示功能;

4)通过数码管、按键完成试题要求的数据显示和界面切换功能。

3.2 显示功能

1)时间界面

时间界面如图2所示,显示内容包括时、分、秒数据和间隔符“-” 时、分、秒数据固定占 2 位显示宽度,不足 2 位补 0。

图2 时间界面

2)输入界面

输入界面如图3所示,由标识符(C)和一个4位数据组成,4位数据通过4位数码管显示,每输入一位数据,数码管显示向左移动一位,直到完成4位数据的输入。

图3 输入界面

每次重新进入输入界面时,默认显示4位数据的4位数码管处于熄灭状态。 

3)记录界面

记录界面如图4所示,由标识符(E)和输入4位数据的起始时和分数据以及时、分数据的间隔符(-)。

图4 记录界面

4)显示要求

按照题目要求的界面格式和切换方式进行设计。

数码管显示无重影、闪烁、过暗、亮度不均匀等严重影响显示效果的缺陷。

3.3 按键功能

1)功能说明

① S4:定义为“切换”,按下S4按键,切换“时间界面”、“输入界面”和“记录界面”。

图5 界面切换顺序

② S5:定义为“清除”,在输入界面下,按下S5,清除当前输入的数据,显示输入数据的4位数码管全部熄灭。

③ S6、S10、S14、S18、S9、S13、S17、S8、S12、S16分别对应数值“0-9”,在“输入界面”下,按下对应按键,实现一位对应数据的输入,显示格式及要求如图3所。若当前4位数据输入完成,按键继续输入不影响当前已输入完成的4位数据。

2)按键要求

按键应做好消抖处理,避免出现一次按键动作导致功能多次触发。

按键动作不影响数码管显示等其他功能。

按键 S5、S6、S10、S14、S18、S9、S13、S17、S8、S12、S16仅在“输入界面”有效。

3.4 记录功能

每次进入记录界面时,将4位数据和输入数据的起始时间保存到E2PROM,存储位置要求如下:

输入数据起始时间(时):E2PROM内部地址0;

输入数据起始时间(分):E2PROM内部地址1;

输入数据(高字节):E2PROM内部地址2;

输入数据(低字节):E2PROM内部地址3;

注意:

E2PROM写入操作发生在切换到记录界面时,其它时间不写入。

输入数据以HEX编码写入E2PROM,例如数据数据为1234,E2PROM内部地址2中应保存04H, 内部地址3中保存D2H。

3.5 LED指示灯功能

1、界面指示灯

1)时间界面下,指示灯 L1 点亮,否则指示灯 L1 熄灭。

2)输入界面下,指示灯 L2 点亮,否则指示灯 L2 熄灭。

3)记录界面下,指示灯 L3 点亮,否则指示灯 L3 熄灭。

2、记录指示灯

若本次记录的4位数据较上一次记录的4位数据大,则指示灯L4点亮,否则指示灯熄灭。

3.6 初始状态

请严格按照以下要求设计作品的上电初始状态。

1)处于时间界面

2)指示灯L1点亮,其余指示灯熄灭。

代码如下,功能运行正常,通过4T测评

#include

#include "ds1302.h"

#include "iic.h"

#include "intrins.h"

sbit h1 = P3^1;

sbit h2 = P3^2;

sbit h3 = P3^3;

sbit s1 = P4^4;

sbit s2 = P4^2;

sbit s3 = P3^5;

sbit s4 = P3^4;

unsigned char stat_my4 = 0;//防止stat_4一直为四,影响Led4

unsigned char stat_4 = 0;//四位数据输入完成标志

unsigned char stat_data = 0;//得到第一个旧数据标志

unsigned int old_value = 0;//旧的数据

unsigned char stat_led = 0xff;

unsigned int num_value = 0;//四位数值大小

unsigned char jilu_h = 0;

unsigned char jilu_m = 0;

unsigned char count_4 = 0;

unsigned char value_4[4] = {0};//键盘获取的四位数值分别存入数组中

unsigned char UI = 0;//0-时间界面 1-输入界面 2—记录界面

unsigned char t_h = 0;

unsigned char t_m = 0;

unsigned char t_s = 0;

unsigned char stat_jilu = 0;

unsigned char code SMG_NoDot[18]={0xc0,0xf9,

0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,

0x88,0x80,0xc6,0xc0,0x86,0x8e,0xbf,0x7f};

unsigned char code read_addre[7] = {0x81,0x83,0x85,0x87,0x89,0x8b,0x8d};

unsigned char code write_addre[7] = {0x80,0x82,0x84,0x86,0x88,0x8a,0x8c};

unsigned char Intimer[7] = {0x59,0x09,0x23,0x03,0x03,0x07,0x24};

void Delay5ms() //@12.000MHz

{

unsigned char i, j;

i = 59;

j = 90;

do

{

while (--j);

} while (--i);

}

void Delay20ms() //@12.000MHz

{

unsigned char i, j, k;

_nop_();

_nop_();

i = 1;

j = 234;

k = 113;

do

{

do

{

while (--k);

} while (--j);

} while (--i);

}

void Init_mytimer()

{

unsigned char i = 0;

Write_Ds1302_Byte(0x8e,0x00);

for(i = 0;i < 7;i++)

{

Write_Ds1302_Byte(write_addre[i],Intimer[i]);

}

Write_Ds1302_Byte(0x8e,0x80);

}

void read_mytimer()

{

t_h = Read_Ds1302_Byte(0x85);

t_m = Read_Ds1302_Byte(0x83);

t_s = Read_Ds1302_Byte(0x81);

}

unsigned char read_eeprom(unsigned char addre)

{

unsigned char epr_value = 0;

I2CStart();

I2CSendByte(0xa0);

I2CWaitAck();

I2CSendByte(addre);

I2CWaitAck();

// I2CStop();

I2CStart();

I2CSendByte(0xa1);

I2CWaitAck();

epr_value = I2CReceiveByte();

I2CSendAck(1);

I2CStop();

return epr_value;

}

void write_eeprom(unsigned char addre,unsigned char w_value)

{

I2CStart();

I2CSendByte(0xa0);

I2CWaitAck();

I2CSendByte(addre);

I2CWaitAck();

I2CSendByte(w_value);

I2CWaitAck();

I2CStop();

}

void SelectHC573(unsigned char channel,unsigned char dat)

{

P2 = (P2 & 0x1f) | 0x00;

P0 = dat;

switch(channel)

{

case 4:

P2 = (P2 & 0x1f) | 0x80;

break;

case 5:

P2 = (P2 & 0x1f) | 0xa0;

break;

case 6:

P2 = (P2 & 0x1f) | 0xc0;

break;

case 7:

P2 = (P2 & 0x1f) | 0xe0;

break;

case 0:

P2 = (P2 & 0x1f) | 0x00;

break;

}

P2 = (P2 & 0x1f) | 0x00;

}

void DelaySMG(unsigned int t)

{

while(t--);

}

void DisplaySMG_Bit(unsigned char pos,unsigned char value)

{

SelectHC573(6,0x01 << pos);

SelectHC573(7,value);

DelaySMG(500);

SelectHC573(6,0x01 << pos);

SelectHC573(7,0xff);

}

void DisplaySMG_All(unsigned char value)

{

SelectHC573(6,0xff);

SelectHC573(7,value);

}

void DisplaySMG_Info()

{

switch(UI)

{

case 0:

DisplaySMG_Bit(0,SMG_NoDot[t_h >> 4]);

DisplaySMG_Bit(1,SMG_NoDot[t_h & 0x0f]);

DisplaySMG_Bit(2,SMG_NoDot[16]);

DisplaySMG_Bit(3,SMG_NoDot[t_m >> 4]);

DisplaySMG_Bit(4,SMG_NoDot[t_m & 0x0f]);

DisplaySMG_Bit(5,SMG_NoDot[16]);

DisplaySMG_Bit(6,SMG_NoDot[(t_s >> 4) & 0x07]);

DisplaySMG_Bit(7,SMG_NoDot[t_s & 0x0f]);

break;

case 1:

DisplaySMG_Bit(0,0xc6);

if(count_4 == 1)

{

DisplaySMG_Bit(7,SMG_NoDot[value_4[0]]);

}

else if(count_4 == 2)

{

DisplaySMG_Bit(6,SMG_NoDot[value_4[0]]);

DisplaySMG_Bit(7,SMG_NoDot[value_4[1]]);

}

else if(count_4 == 3)

{

DisplaySMG_Bit(5,SMG_NoDot[value_4[0]]);

DisplaySMG_Bit(6,SMG_NoDot[value_4[1]]);

DisplaySMG_Bit(7,SMG_NoDot[value_4[2]]);

}

else if(count_4 == 4)

{

DisplaySMG_Bit(4,SMG_NoDot[value_4[0]]);

DisplaySMG_Bit(5,SMG_NoDot[value_4[1]]);

DisplaySMG_Bit(6,SMG_NoDot[value_4[2]]);

DisplaySMG_Bit(7,SMG_NoDot[value_4[3]]);

}

break;

case 2:

DisplaySMG_Bit(0,0x86);

DisplaySMG_Bit(3,SMG_NoDot[jilu_h >> 4]);

DisplaySMG_Bit(4,SMG_NoDot[jilu_h & 0x0f]);

DisplaySMG_Bit(5,SMG_NoDot[16]);

DisplaySMG_Bit(6,SMG_NoDot[jilu_m >> 4]);

DisplaySMG_Bit(7,SMG_NoDot[jilu_m & 0x0f]);

break;

}

}

void scan_key()

{

h1 = 0;

h2 = h3 = s1 = s2 = s3 = s4 = 1;

if(s1 == 0)//6->0

{

Delay20ms();

if(s1 == 0)

{

if(count_4 < 4)

{

value_4[count_4] = 0;

count_4++;

}

while(s1 == 0)

{

DisplaySMG_Info();

}

}

}

else if(s2 == 0 && UI == 1)//10->1

{

Delay20ms();

if(s2 == 0)

{

if(count_4 < 4)

{

value_4[count_4] = 1;

count_4++;

}

while(s2 == 0)

{

DisplaySMG_Info();

}

}

}

else if(s3 == 0 && UI == 1)//14->2

{

Delay20ms();

if(s3 == 0)

{

if(count_4 < 4)

{

value_4[count_4] = 2;

count_4++;

}

while(s3 == 0)

{

DisplaySMG_Info();

}

}

}

else if(s4 == 0 && UI == 1)//18->3

{

Delay20ms();

if(s4 == 0)

{

if(count_4 < 4)

{

value_4[count_4] = 3;

count_4++;

}

while(s4 == 0)

{

DisplaySMG_Info();

}

}

}

h2 = 0;

h1 = h3 = s1 = s2 = s3 = s4 = 1;

if(s1 == 0)//5

{

Delay20ms();

if(s1 == 0)

{

if(UI == 1)

{

count_4 = 0;

value_4[0] = value_4[1] = value_4[2] = value_4[3] = 0;

stat_jilu = 0;

stat_my4 = 0;

}

while(s1 == 0)

{

DisplaySMG_Info();

}

}

}

else if(s2 == 0 && UI == 1)//9->4

{

Delay20ms();

if(s2 == 0)

{

if(count_4 < 4)

{

value_4[count_4] = 4;

count_4++;

}

while(s2 == 0)

{

DisplaySMG_Info();

}

}

}

else if(s3 == 0 && UI == 1)//13->5

{

Delay20ms();

if(s3 == 0)

{

if(count_4 < 4)

{

value_4[count_4] = 5;

count_4++;

}

while(s3 == 0)

{

DisplaySMG_Info();

}

}

}

else if(s4 == 0 && UI == 1)//17->6

{

Delay20ms();

if(s4 == 0)

{

if(count_4 < 4)

{

value_4[count_4] = 6;

count_4++;

}

while(s4 == 0)

{

DisplaySMG_Info();

}

}

}

h3 = 0;

h2 = h1 = s1 = s2 = s3 = s4 = 1;

if(s1 == 0)//4

{

Delay20ms();

if(s1 == 0)

{

if(UI == 0)

{

UI = 1;

count_4 = 0;

stat_jilu = 0;

stat_my4 = 0;

}

else if(UI == 1)

{

UI = 2;

write_eeprom(0x00,(jilu_h/16)*10 + jilu_h%16);

Delay5ms();

write_eeprom(0x01,(jilu_m/16)*10 + jilu_m%16);

Delay5ms();

write_eeprom(0x02,num_value >> 8);

Delay5ms();

write_eeprom(0x03,num_value & 0x00ff);

Delay5ms();

}

else

{

UI = 0;

}

while(s1 == 0)

{

DisplaySMG_Info();

}

}

}

else if(s2 == 0 && UI == 1)//8->7

{

Delay20ms();

if(s2 == 0)

{

if(count_4 < 4)

{

value_4[count_4] = 7;

count_4++;

}

while(s2 == 0)

{

DisplaySMG_Info();

}

}

}

else if(s3 == 0 && UI == 1)//12->8

{

Delay20ms();

if(s3 == 0)

{

if(count_4 < 4)

{

value_4[count_4] = 8;

count_4++;

}

while(s3 == 0)

{

DisplaySMG_Info();

}

}

}

else if(s4 == 0 && UI == 1)//16->9

{

Delay20ms();

if(s4 == 0)

{

if(count_4 < 4)

{

value_4[count_4] = 9;

count_4++;

}

while(s4 == 0)

{

DisplaySMG_Info();

}

}

}

if(count_4 == 1)

{

if(stat_jilu == 0)

{

jilu_h = Read_Ds1302_Byte(0x85);

jilu_m = Read_Ds1302_Byte(0x83);

stat_jilu = 1;

}

}

if(count_4 == 4)

{

num_value = (value_4[0] * 1000) + (value_4[1] * 100) + (value_4[2] * 10) + value_4[3];

if(stat_my4 == 0)

{

stat_4 = 1;

stat_my4 = 1;

}

}

}

void led_control()

{

if(UI == 0)

{

stat_led = stat_led | 0x04;

stat_led = stat_led & 0xfe;

SelectHC573(4,stat_led);

}

else if(UI == 1)

{

stat_led = stat_led | 0x01;

stat_led = stat_led & 0xfd;

SelectHC573(4,stat_led);

}

else if(UI == 2)

{

stat_led = stat_led | 0x02;

stat_led = stat_led & 0xfb;

SelectHC573(4,stat_led);

}

if(stat_data == 0 && stat_4 == 1)

{

old_value = num_value;

stat_data = 1;

stat_4 = 0;

}

if(stat_4 == 1)

{

if(old_value < num_value)

{

stat_led = stat_led & 0xf7;

SelectHC573(4,stat_led);

}

else

{

stat_led = stat_led | 0x08;

SelectHC573(4,stat_led);

}

stat_4 = 0;

old_value = num_value;

}

}

void main()

{

Init_mytimer();

DisplaySMG_All(0xff);

SelectHC573(4,0xff);

SelectHC573(5,0x00);

while(1)

{

scan_key();

read_mytimer();

DisplaySMG_Info();

led_control();

}

}

相关文章

评论可见,请评论后查看内容,谢谢!!!
 您阅读本篇文章共花了: