前言

        一直以来上位软件比如C++等和西门子等其他品牌PLC之间的数据交换都是大家比较头疼的问题,尤其是C++上位软件程序员。传统的方法一般有OPC、Socket 等,直到LibModbus 开源库出现后这种途径对程序袁来说又有了新的选择。

Modbus简介

Modbus特点

        1 )使用简单,利用MUDBUS库文件简单的几条指令就能实现与智能仪表,变频器,打印机等设备进行通讯,且无需加其他硬件上的成本MODBUS总线广泛应用于仪器仪表、智能高低压电器、变送器、可编程控制器、人机界面、变频器、现场智能设备等诸多领域。MODBUS与其他的现场总线和工业网络相比有以下几个显著特点。

        2)标准、开放:用户可以免费放心的使用

        MODBUS协议,不用缴纳许可费用,不会涉及侵犯知识产权。目前支持MODBUS的厂一家超过400家,支持MODBUS的产品超过600种。在中国,MODBUS已经成为国家标准GB/T19582-2008。据不完全统 计:截止到2007年MODBUS的节点安装数量已经超过了1000万个。

        3)应用广泛:凡MODBUS协议设备具有RS232/485接口的都可以使用本产品实现与现场总线PROFIBUS的互连。如:具有MODBUS协议接口的变频器、智能高低压电器、电机启动保护装置、电量测量装置、智能现场测量设备、各种变送器及仪表等。

        4)MODBUS可以支持较多类型的电气接口:MODBUS 总线协议采用主站查询从站的方式,物理接口可以是RS232、RS485、RS422、RJ45,还可以在各种介质上传送,如双绞线、光纤、无线射频等。

        5)MODBUS的帧格式较为简单、紧凑,格式规范,易于传输,通俗易懂。用户使用容易,厂商开发简单。用户不必了解PROFIBUS和MODBUS技术细节,只需参考说明手册及提供的应用实例,按要求完成配置,不需要复杂的编程,即可在短时间内实现设备间的连接通信。

        6)透明通信:用户可以依照PROFIBUS通信数据区和MODBUS通信数据区的映射关系,实现PROFIBUS到MODBUS之间的数据透明通信。

LibModbus库下载

https://libmodbus.org/https://libmodbus.org/

https://gitcode.com/stephane/libmodbus/overview?utm_source=csdn_github_accelerator&isLogin=1https://gitcode.com/stephane/libmodbus/overview?utm_source=csdn_github_accelerator&isLogin=1https://github.com/stephane/libmodbushttps://github.com/stephane/libmodbushttps://download.csdn.net/download/lzc881012/88695801https://download.csdn.net/download/lzc881012/88695801

LibModbus库Windows版本的编译

1、进入到libmodbus\src\win32文件夹下。 2、双击configure.js文件进行编译,成功后会弹出编译完成窗口,点击关闭。 3、然后在双击modbus-9.sln通过VS打开项目,打开项目完成后编译即可。 4、编译完成后libmodbus\src\win32文件夹下就会出现modbus.dll和modbus.lib两个文件。

将上述步骤中生成的modbus.lib文件和libmodbus\src中所有的.h文件通过VS包含到自己的项目中即可。 在程序中包含libModbus/modbus.h一个头文件即可。 将上述步骤在生成的modbus.dll放到你的项目生成目录下,例如Debug/Release目录下。

LibModbus库modbus.h头文件

/*

* Copyright © 2001-2013 Stéphane Raimbault

*

* SPDX-License-Identifier: LGPL-2.1+

*/

#ifndef MODBUS_H

#define MODBUS_H

/* Add this for macros that defined unix flavor */

#if (defined(__unix__) || defined(unix)) && !defined(USG)

#include

#endif

#ifndef _MSC_VER

#include

#else

#include "stdint.h"

#endif

#include "modbus-version.h"

#if defined(_MSC_VER)

# if defined(DLLBUILD)

/* define DLLBUILD when building the DLL */

# define MODBUS_API __declspec(dllexport)

# else

# define MODBUS_API __declspec(dllimport)

# endif

#else

# define MODBUS_API

#endif

#ifdef __cplusplus

# define MODBUS_BEGIN_DECLS extern "C" {

# define MODBUS_END_DECLS }

#else

# define MODBUS_BEGIN_DECLS

# define MODBUS_END_DECLS

#endif

MODBUS_BEGIN_DECLS

#ifndef FALSE

#define FALSE 0

#endif

#ifndef TRUE

#define TRUE 1

#endif

#ifndef OFF

#define OFF 0

#endif

#ifndef ON

#define ON 1

#endif

/* Modbus function codes */

#define MODBUS_FC_READ_COILS 0x01

#define MODBUS_FC_READ_DISCRETE_INPUTS 0x02

#define MODBUS_FC_READ_HOLDING_REGISTERS 0x03

#define MODBUS_FC_READ_INPUT_REGISTERS 0x04

#define MODBUS_FC_WRITE_SINGLE_COIL 0x05

#define MODBUS_FC_WRITE_SINGLE_REGISTER 0x06

#define MODBUS_FC_READ_EXCEPTION_STATUS 0x07

#define MODBUS_FC_WRITE_MULTIPLE_COILS 0x0F

#define MODBUS_FC_WRITE_MULTIPLE_REGISTERS 0x10

#define MODBUS_FC_REPORT_SLAVE_ID 0x11

#define MODBUS_FC_MASK_WRITE_REGISTER 0x16

#define MODBUS_FC_WRITE_AND_READ_REGISTERS 0x17

#define MODBUS_BROADCAST_ADDRESS 0

/* Modbus_Application_Protocol_V1_1b.pdf (chapter 6 section 1 page 12)

* Quantity of Coils to read (2 bytes): 1 to 2000 (0x7D0)

* (chapter 6 section 11 page 29)

* Quantity of Coils to write (2 bytes): 1 to 1968 (0x7B0)

*/

#define MODBUS_MAX_READ_BITS 2000

#define MODBUS_MAX_WRITE_BITS 1968

/* Modbus_Application_Protocol_V1_1b.pdf (chapter 6 section 3 page 15)

* Quantity of Registers to read (2 bytes): 1 to 125 (0x7D)

* (chapter 6 section 12 page 31)

* Quantity of Registers to write (2 bytes) 1 to 123 (0x7B)

* (chapter 6 section 17 page 38)

* Quantity of Registers to write in R/W registers (2 bytes) 1 to 121 (0x79)

*/

#define MODBUS_MAX_READ_REGISTERS 125

#define MODBUS_MAX_WRITE_REGISTERS 123

#define MODBUS_MAX_WR_WRITE_REGISTERS 121

#define MODBUS_MAX_WR_READ_REGISTERS 125

/* The size of the MODBUS PDU is limited by the size constraint inherited from

* the first MODBUS implementation on Serial Line network (max. RS485 ADU = 256

* bytes). Therefore, MODBUS PDU for serial line communication = 256 - Server

* address (1 byte) - CRC (2 bytes) = 253 bytes.

*/

#define MODBUS_MAX_PDU_LENGTH 253

/* Consequently:

* - RTU MODBUS ADU = 253 bytes + Server address (1 byte) + CRC (2 bytes) = 256

* bytes.

* - TCP MODBUS ADU = 253 bytes + MBAP (7 bytes) = 260 bytes.

* so the maximum of both backend in 260 bytes. This size can used to allocate

* an array of bytes to store responses and it will be compatible with the two

* backends.

*/

#define MODBUS_MAX_ADU_LENGTH 260

/* Random number to avoid errno conflicts */

#define MODBUS_ENOBASE 112345678

/* Protocol exceptions */

enum {

MODBUS_EXCEPTION_ILLEGAL_FUNCTION = 0x01,

MODBUS_EXCEPTION_ILLEGAL_DATA_ADDRESS,

MODBUS_EXCEPTION_ILLEGAL_DATA_VALUE,

MODBUS_EXCEPTION_SLAVE_OR_SERVER_FAILURE,

MODBUS_EXCEPTION_ACKNOWLEDGE,

MODBUS_EXCEPTION_SLAVE_OR_SERVER_BUSY,

MODBUS_EXCEPTION_NEGATIVE_ACKNOWLEDGE,

MODBUS_EXCEPTION_MEMORY_PARITY,

MODBUS_EXCEPTION_NOT_DEFINED,

MODBUS_EXCEPTION_GATEWAY_PATH,

MODBUS_EXCEPTION_GATEWAY_TARGET,

MODBUS_EXCEPTION_MAX

};

#define EMBXILFUN (MODBUS_ENOBASE + MODBUS_EXCEPTION_ILLEGAL_FUNCTION)

#define EMBXILADD (MODBUS_ENOBASE + MODBUS_EXCEPTION_ILLEGAL_DATA_ADDRESS)

#define EMBXILVAL (MODBUS_ENOBASE + MODBUS_EXCEPTION_ILLEGAL_DATA_VALUE)

#define EMBXSFAIL (MODBUS_ENOBASE + MODBUS_EXCEPTION_SLAVE_OR_SERVER_FAILURE)

#define EMBXACK (MODBUS_ENOBASE + MODBUS_EXCEPTION_ACKNOWLEDGE)

#define EMBXSBUSY (MODBUS_ENOBASE + MODBUS_EXCEPTION_SLAVE_OR_SERVER_BUSY)

#define EMBXNACK (MODBUS_ENOBASE + MODBUS_EXCEPTION_NEGATIVE_ACKNOWLEDGE)

#define EMBXMEMPAR (MODBUS_ENOBASE + MODBUS_EXCEPTION_MEMORY_PARITY)

#define EMBXGPATH (MODBUS_ENOBASE + MODBUS_EXCEPTION_GATEWAY_PATH)

#define EMBXGTAR (MODBUS_ENOBASE + MODBUS_EXCEPTION_GATEWAY_TARGET)

/* Native libmodbus error codes */

#define EMBBADCRC (EMBXGTAR + 1)

#define EMBBADDATA (EMBXGTAR + 2)

#define EMBBADEXC (EMBXGTAR + 3)

#define EMBUNKEXC (EMBXGTAR + 4)

#define EMBMDATA (EMBXGTAR + 5)

#define EMBBADSLAVE (EMBXGTAR + 6)

extern const unsigned int libmodbus_version_major;

extern const unsigned int libmodbus_version_minor;

extern const unsigned int libmodbus_version_micro;

typedef struct _modbus modbus_t;

typedef struct _modbus_mapping_t {

int nb_bits;

int start_bits;

int nb_input_bits;

int start_input_bits;

int nb_input_registers;

int start_input_registers;

int nb_registers;

int start_registers;

uint8_t *tab_bits;

uint8_t *tab_input_bits;

uint16_t *tab_input_registers;

uint16_t *tab_registers;

} modbus_mapping_t;

typedef enum

{

MODBUS_ERROR_RECOVERY_NONE = 0,

MODBUS_ERROR_RECOVERY_LINK = (1<<1),

MODBUS_ERROR_RECOVERY_PROTOCOL = (1<<2)

} modbus_error_recovery_mode;

MODBUS_API int modbus_set_slave(modbus_t* ctx, int slave);

MODBUS_API int modbus_get_slave(modbus_t* ctx);

MODBUS_API int modbus_set_error_recovery(modbus_t *ctx, modbus_error_recovery_mode error_recovery);

MODBUS_API int modbus_set_socket(modbus_t *ctx, int s);

MODBUS_API int modbus_get_socket(modbus_t *ctx);

MODBUS_API int modbus_get_response_timeout(modbus_t *ctx, uint32_t *to_sec, uint32_t *to_usec);

MODBUS_API int modbus_set_response_timeout(modbus_t *ctx, uint32_t to_sec, uint32_t to_usec);

MODBUS_API int modbus_get_byte_timeout(modbus_t *ctx, uint32_t *to_sec, uint32_t *to_usec);

MODBUS_API int modbus_set_byte_timeout(modbus_t *ctx, uint32_t to_sec, uint32_t to_usec);

MODBUS_API int modbus_get_indication_timeout(modbus_t *ctx, uint32_t *to_sec, uint32_t *to_usec);

MODBUS_API int modbus_set_indication_timeout(modbus_t *ctx, uint32_t to_sec, uint32_t to_usec);

MODBUS_API int modbus_get_header_length(modbus_t *ctx);

MODBUS_API int modbus_connect(modbus_t *ctx);

MODBUS_API void modbus_close(modbus_t *ctx);

MODBUS_API void modbus_free(modbus_t *ctx);

MODBUS_API int modbus_flush(modbus_t *ctx);

MODBUS_API int modbus_set_debug(modbus_t *ctx, int flag);

MODBUS_API const char *modbus_strerror(int errnum);

MODBUS_API int modbus_read_bits(modbus_t *ctx, int addr, int nb, uint8_t *dest);

MODBUS_API int modbus_read_input_bits(modbus_t *ctx, int addr, int nb, uint8_t *dest);

MODBUS_API int modbus_read_registers(modbus_t *ctx, int addr, int nb, uint16_t *dest);

MODBUS_API int modbus_read_input_registers(modbus_t *ctx, int addr, int nb, uint16_t *dest);

MODBUS_API int modbus_write_bit(modbus_t *ctx, int coil_addr, int status);

MODBUS_API int modbus_write_register(modbus_t *ctx, int reg_addr, const uint16_t value);

MODBUS_API int modbus_write_bits(modbus_t *ctx, int addr, int nb, const uint8_t *data);

MODBUS_API int modbus_write_registers(modbus_t *ctx, int addr, int nb, const uint16_t *data);

MODBUS_API int modbus_mask_write_register(modbus_t *ctx, int addr, uint16_t and_mask, uint16_t or_mask);

MODBUS_API int modbus_write_and_read_registers(modbus_t *ctx, int write_addr, int write_nb,

const uint16_t *src, int read_addr, int read_nb,

uint16_t *dest);

MODBUS_API int modbus_report_slave_id(modbus_t *ctx, int max_dest, uint8_t *dest);

MODBUS_API modbus_mapping_t* modbus_mapping_new_start_address(

unsigned int start_bits, unsigned int nb_bits,

unsigned int start_input_bits, unsigned int nb_input_bits,

unsigned int start_registers, unsigned int nb_registers,

unsigned int start_input_registers, unsigned int nb_input_registers);

MODBUS_API modbus_mapping_t* modbus_mapping_new(int nb_bits, int nb_input_bits,

int nb_registers, int nb_input_registers);

MODBUS_API void modbus_mapping_free(modbus_mapping_t *mb_mapping);

MODBUS_API int modbus_send_raw_request(modbus_t *ctx, const uint8_t *raw_req, int raw_req_length);

MODBUS_API int modbus_receive(modbus_t *ctx, uint8_t *req);

MODBUS_API int modbus_receive_confirmation(modbus_t *ctx, uint8_t *rsp);

MODBUS_API int modbus_reply(modbus_t *ctx, const uint8_t *req,

int req_length, modbus_mapping_t *mb_mapping);

MODBUS_API int modbus_reply_exception(modbus_t *ctx, const uint8_t *req,

unsigned int exception_code);

/**

* UTILS FUNCTIONS

**/

#define MODBUS_GET_HIGH_BYTE(data) (((data) >> 8) & 0xFF)

#define MODBUS_GET_LOW_BYTE(data) ((data) & 0xFF)

#define MODBUS_GET_INT64_FROM_INT16(tab_int16, index) \

(((int64_t)tab_int16[(index) ] << 48) + \

((int64_t)tab_int16[(index) + 1] << 32) + \

((int64_t)tab_int16[(index) + 2] << 16) + \

(int64_t)tab_int16[(index) + 3])

#define MODBUS_GET_INT32_FROM_INT16(tab_int16, index) ((tab_int16[(index)] << 16) + tab_int16[(index) + 1])

#define MODBUS_GET_INT16_FROM_INT8(tab_int8, index) ((tab_int8[(index)] << 8) + tab_int8[(index) + 1])

#define MODBUS_SET_INT16_TO_INT8(tab_int8, index, value) \

do { \

tab_int8[(index)] = (value) >> 8; \

tab_int8[(index) + 1] = (value) & 0xFF; \

} while (0)

#define MODBUS_SET_INT32_TO_INT16(tab_int16, index, value) \

do { \

tab_int16[(index) ] = (value) >> 16; \

tab_int16[(index) + 1] = (value); \

} while (0)

#define MODBUS_SET_INT64_TO_INT16(tab_int16, index, value) \

do { \

tab_int16[(index) ] = (value) >> 48; \

tab_int16[(index) + 1] = (value) >> 32; \

tab_int16[(index) + 2] = (value) >> 16; \

tab_int16[(index) + 3] = (value); \

} while (0)

MODBUS_API void modbus_set_bits_from_byte(uint8_t *dest, int idx, const uint8_t value);

MODBUS_API void modbus_set_bits_from_bytes(uint8_t *dest, int idx, unsigned int nb_bits,

const uint8_t *tab_byte);

MODBUS_API uint8_t modbus_get_byte_from_bits(const uint8_t *src, int idx, unsigned int nb_bits);

MODBUS_API float modbus_get_float(const uint16_t *src);

MODBUS_API float modbus_get_float_abcd(const uint16_t *src);

MODBUS_API float modbus_get_float_dcba(const uint16_t *src);

MODBUS_API float modbus_get_float_badc(const uint16_t *src);

MODBUS_API float modbus_get_float_cdab(const uint16_t *src);

MODBUS_API void modbus_set_float(float f, uint16_t *dest);

MODBUS_API void modbus_set_float_abcd(float f, uint16_t *dest);

MODBUS_API void modbus_set_float_dcba(float f, uint16_t *dest);

MODBUS_API void modbus_set_float_badc(float f, uint16_t *dest);

MODBUS_API void modbus_set_float_cdab(float f, uint16_t *dest);

#include "modbus-tcp.h"

#include "modbus-rtu.h"

MODBUS_END_DECLS

#endif /* MODBUS_H */

 

LibModbus库Modbus.h头文件

/*

* Copyright © 2001-2011 Stéphane Raimbault

*

* SPDX-License-Identifier: LGPL-2.1+

*

* This library implements the Modbus protocol.

* http://libmodbus.org/

*/

#include

#include

#include

#include

#include

#include

#include

#ifndef _MSC_VER

#include

#endif

#include

#include "modbus.h"

#include "modbus-private.h"

/* Internal use */

#define MSG_LENGTH_UNDEFINED -1

/* Exported version */

const unsigned int libmodbus_version_major = LIBMODBUS_VERSION_MAJOR;

const unsigned int libmodbus_version_minor = LIBMODBUS_VERSION_MINOR;

const unsigned int libmodbus_version_micro = LIBMODBUS_VERSION_MICRO;

/* Max between RTU and TCP max adu length (so TCP) */

#define MAX_MESSAGE_LENGTH 260

/* 3 steps are used to parse the query */

typedef enum {

_STEP_FUNCTION,

_STEP_META,

_STEP_DATA

} _step_t;

const char *modbus_strerror(int errnum) {

switch (errnum) {

case EMBXILFUN:

return "Illegal function";

case EMBXILADD:

return "Illegal data address";

case EMBXILVAL:

return "Illegal data value";

case EMBXSFAIL:

return "Slave device or server failure";

case EMBXACK:

return "Acknowledge";

case EMBXSBUSY:

return "Slave device or server is busy";

case EMBXNACK:

return "Negative acknowledge";

case EMBXMEMPAR:

return "Memory parity error";

case EMBXGPATH:

return "Gateway path unavailable";

case EMBXGTAR:

return "Target device failed to respond";

case EMBBADCRC:

return "Invalid CRC";

case EMBBADDATA:

return "Invalid data";

case EMBBADEXC:

return "Invalid exception code";

case EMBMDATA:

return "Too many data";

case EMBBADSLAVE:

return "Response not from requested slave";

default:

return strerror(errnum);

}

}

void _error_print(modbus_t *ctx, const char *context)

{

if (ctx->debug) {

fprintf(stderr, "ERROR %s", modbus_strerror(errno));

if (context != NULL) {

fprintf(stderr, ": %s\n", context);

} else {

fprintf(stderr, "\n");

}

}

}

static void _sleep_response_timeout(modbus_t *ctx)

{

/* Response timeout is always positive */

#ifdef _WIN32

/* usleep doesn't exist on Windows */

Sleep((ctx->response_timeout.tv_sec * 1000) +

(ctx->response_timeout.tv_usec / 1000));

#else

/* usleep source code */

struct timespec request, remaining;

request.tv_sec = ctx->response_timeout.tv_sec;

request.tv_nsec = ((long int)ctx->response_timeout.tv_usec) * 1000;

while (nanosleep(&request, &remaining) == -1 && errno == EINTR) {

request = remaining;

}

#endif

}

int modbus_flush(modbus_t *ctx)

{

int rc;

if (ctx == NULL) {

errno = EINVAL;

return -1;

}

rc = ctx->backend->flush(ctx);

if (rc != -1 && ctx->debug) {

/* Not all backends are able to return the number of bytes flushed */

printf("Bytes flushed (%d)\n", rc);

}

return rc;

}

/* Computes the length of the expected response */

static unsigned int compute_response_length_from_request(modbus_t *ctx, uint8_t *req)

{

int length;

const int offset = ctx->backend->header_length;

switch (req[offset]) {

case MODBUS_FC_READ_COILS:

case MODBUS_FC_READ_DISCRETE_INPUTS: {

/* Header + nb values (code from write_bits) */

int nb = (req[offset + 3] << 8) | req[offset + 4];

length = 2 + (nb / 8) + ((nb % 8) ? 1 : 0);

}

break;

case MODBUS_FC_WRITE_AND_READ_REGISTERS:

case MODBUS_FC_READ_HOLDING_REGISTERS:

case MODBUS_FC_READ_INPUT_REGISTERS:

/* Header + 2 * nb values */

length = 2 + 2 * (req[offset + 3] << 8 | req[offset + 4]);

break;

case MODBUS_FC_READ_EXCEPTION_STATUS:

length = 3;

break;

case MODBUS_FC_REPORT_SLAVE_ID:

/* The response is device specific (the header provides the

length) */

return MSG_LENGTH_UNDEFINED;

case MODBUS_FC_MASK_WRITE_REGISTER:

length = 7;

break;

default:

length = 5;

}

return offset + length + ctx->backend->checksum_length;

}

/* Sends a request/response */

static int send_msg(modbus_t *ctx, uint8_t *msg, int msg_length)

{

int rc;

int i;

msg_length = ctx->backend->send_msg_pre(msg, msg_length);

if (ctx->debug) {

for (i = 0; i < msg_length; i++)

printf("[%.2X]", msg[i]);

printf("\n");

}

/* In recovery mode, the write command will be issued until to be

successful! Disabled by default. */

do {

rc = ctx->backend->send(ctx, msg, msg_length);

if (rc == -1) {

_error_print(ctx, NULL);

if (ctx->error_recovery & MODBUS_ERROR_RECOVERY_LINK) {

int saved_errno = errno;

if ((errno == EBADF || errno == ECONNRESET || errno == EPIPE)) {

modbus_close(ctx);

_sleep_response_timeout(ctx);

modbus_connect(ctx);

} else {

_sleep_response_timeout(ctx);

modbus_flush(ctx);

}

errno = saved_errno;

}

}

} while ((ctx->error_recovery & MODBUS_ERROR_RECOVERY_LINK) &&

rc == -1);

if (rc > 0 && rc != msg_length) {

errno = EMBBADDATA;

return -1;

}

return rc;

}

int modbus_send_raw_request(modbus_t *ctx, const uint8_t *raw_req, int raw_req_length)

{

sft_t sft;

uint8_t req[MAX_MESSAGE_LENGTH];

int req_length;

if (ctx == NULL) {

errno = EINVAL;

return -1;

}

if (raw_req_length < 2 || raw_req_length > (MODBUS_MAX_PDU_LENGTH + 1)) {

/* The raw request must contain function and slave at least and

must not be longer than the maximum pdu length plus the slave

address. */

errno = EINVAL;

return -1;

}

sft.slave = raw_req[0];

sft.function = raw_req[1];

/* The t_id is left to zero */

sft.t_id = 0;

/* This response function only set the header so it's convenient here */

req_length = ctx->backend->build_response_basis(&sft, req);

if (raw_req_length > 2) {

/* Copy data after function code */

memcpy(req + req_length, raw_req + 2, raw_req_length - 2);

req_length += raw_req_length - 2;

}

return send_msg(ctx, req, req_length);

}

/*

* ---------- Request Indication ----------

* | Client | ---------------------->| Server |

* ---------- Confirmation Response ----------

*/

/* Computes the length to read after the function received */

static uint8_t compute_meta_length_after_function(int function,

msg_type_t msg_type)

{

int length;

if (msg_type == MSG_INDICATION) {

if (function <= MODBUS_FC_WRITE_SINGLE_REGISTER) {

length = 4;

} else if (function == MODBUS_FC_WRITE_MULTIPLE_COILS ||

function == MODBUS_FC_WRITE_MULTIPLE_REGISTERS) {

length = 5;

} else if (function == MODBUS_FC_MASK_WRITE_REGISTER) {

length = 6;

} else if (function == MODBUS_FC_WRITE_AND_READ_REGISTERS) {

length = 9;

} else {

/* MODBUS_FC_READ_EXCEPTION_STATUS, MODBUS_FC_REPORT_SLAVE_ID */

length = 0;

}

} else {

/* MSG_CONFIRMATION */

switch (function) {

case MODBUS_FC_WRITE_SINGLE_COIL:

case MODBUS_FC_WRITE_SINGLE_REGISTER:

case MODBUS_FC_WRITE_MULTIPLE_COILS:

case MODBUS_FC_WRITE_MULTIPLE_REGISTERS:

length = 4;

break;

case MODBUS_FC_MASK_WRITE_REGISTER:

length = 6;

break;

default:

length = 1;

}

}

return length;

}

/* Computes the length to read after the meta information (address, count, etc) */

static int compute_data_length_after_meta(modbus_t *ctx, uint8_t *msg,

msg_type_t msg_type)

{

int function = msg[ctx->backend->header_length];

int length;

if (msg_type == MSG_INDICATION) {

switch (function) {

case MODBUS_FC_WRITE_MULTIPLE_COILS:

case MODBUS_FC_WRITE_MULTIPLE_REGISTERS:

length = msg[ctx->backend->header_length + 5];

break;

case MODBUS_FC_WRITE_AND_READ_REGISTERS:

length = msg[ctx->backend->header_length + 9];

break;

default:

length = 0;

}

} else {

/* MSG_CONFIRMATION */

if (function <= MODBUS_FC_READ_INPUT_REGISTERS ||

function == MODBUS_FC_REPORT_SLAVE_ID ||

function == MODBUS_FC_WRITE_AND_READ_REGISTERS) {

length = msg[ctx->backend->header_length + 1];

} else {

length = 0;

}

}

length += ctx->backend->checksum_length;

return length;

}

/* Waits a response from a modbus server or a request from a modbus client.

This function blocks if there is no replies (3 timeouts).

The function shall return the number of received characters and the received

message in an array of uint8_t if successful. Otherwise it shall return -1

and errno is set to one of the values defined below:

- ECONNRESET

- EMBBADDATA

- EMBUNKEXC

- ETIMEDOUT

- read() or recv() error codes

*/

int _modbus_receive_msg(modbus_t *ctx, uint8_t *msg, msg_type_t msg_type)

{

int rc;

fd_set rset;

struct timeval tv;

struct timeval *p_tv;

int length_to_read;

int msg_length = 0;

_step_t step;

if (ctx->debug) {

if (msg_type == MSG_INDICATION) {

printf("Waiting for an indication...\n");

} else {

printf("Waiting for a confirmation...\n");

}

}

/* Add a file descriptor to the set */

FD_ZERO(&rset);

FD_SET(ctx->s, &rset);

/* We need to analyse the message step by step. At the first step, we want

* to reach the function code because all packets contain this

* information. */

step = _STEP_FUNCTION;

length_to_read = ctx->backend->header_length + 1;

if (msg_type == MSG_INDICATION) {

/* Wait for a message, we don't know when the message will be

* received */

if (ctx->indication_timeout.tv_sec == 0 && ctx->indication_timeout.tv_usec == 0) {

/* By default, the indication timeout isn't set */

p_tv = NULL;

} else {

/* Wait for an indication (name of a received request by a server, see schema) */

tv.tv_sec = ctx->indication_timeout.tv_sec;

tv.tv_usec = ctx->indication_timeout.tv_usec;

p_tv = &tv;

}

} else {

tv.tv_sec = ctx->response_timeout.tv_sec;

tv.tv_usec = ctx->response_timeout.tv_usec;

p_tv = &tv;

}

while (length_to_read != 0) {

rc = ctx->backend->select(ctx, &rset, p_tv, length_to_read);

if (rc == -1) {

_error_print(ctx, "select");

if (ctx->error_recovery & MODBUS_ERROR_RECOVERY_LINK) {

int saved_errno = errno;

if (errno == ETIMEDOUT) {

_sleep_response_timeout(ctx);

modbus_flush(ctx);

} else if (errno == EBADF) {

modbus_close(ctx);

modbus_connect(ctx);

}

errno = saved_errno;

}

return -1;

}

rc = ctx->backend->recv(ctx, msg + msg_length, length_to_read);

if (rc == 0) {

errno = ECONNRESET;

rc = -1;

}

if (rc == -1) {

_error_print(ctx, "read");

if ((ctx->error_recovery & MODBUS_ERROR_RECOVERY_LINK) &&

(errno == ECONNRESET || errno == ECONNREFUSED ||

errno == EBADF)) {

int saved_errno = errno;

modbus_close(ctx);

modbus_connect(ctx);

/* Could be removed by previous calls */

errno = saved_errno;

}

return -1;

}

/* Display the hex code of each character received */

if (ctx->debug) {

int i;

for (i=0; i < rc; i++)

printf("<%.2X>", msg[msg_length + i]);

}

/* Sums bytes received */

msg_length += rc;

/* Computes remaining bytes */

length_to_read -= rc;

if (length_to_read == 0) {

switch (step) {

case _STEP_FUNCTION:

/* Function code position */

length_to_read = compute_meta_length_after_function(

msg[ctx->backend->header_length],

msg_type);

if (length_to_read != 0) {

step = _STEP_META;

break;

} /* else switches straight to the next step */

case _STEP_META:

length_to_read = compute_data_length_after_meta(

ctx, msg, msg_type);

if ((msg_length + length_to_read) > (int)ctx->backend->max_adu_length) {

errno = EMBBADDATA;

_error_print(ctx, "too many data");

return -1;

}

step = _STEP_DATA;

break;

default:

break;

}

}

if (length_to_read > 0 &&

(ctx->byte_timeout.tv_sec > 0 || ctx->byte_timeout.tv_usec > 0)) {

/* If there is no character in the buffer, the allowed timeout

interval between two consecutive bytes is defined by

byte_timeout */

tv.tv_sec = ctx->byte_timeout.tv_sec;

tv.tv_usec = ctx->byte_timeout.tv_usec;

p_tv = &tv;

}

/* else timeout isn't set again, the full response must be read before

expiration of response timeout (for CONFIRMATION only) */

}

if (ctx->debug)

printf("\n");

return ctx->backend->check_integrity(ctx, msg, msg_length);

}

/* Receive the request from a modbus master */

int modbus_receive(modbus_t *ctx, uint8_t *req)

{

if (ctx == NULL) {

errno = EINVAL;

return -1;

}

return ctx->backend->receive(ctx, req);

}

/* Receives the confirmation.

The function shall store the read response in rsp and return the number of

values (bits or words). Otherwise, its shall return -1 and errno is set.

The function doesn't check the confirmation is the expected response to the

initial request.

*/

int modbus_receive_confirmation(modbus_t *ctx, uint8_t *rsp)

{

if (ctx == NULL) {

errno = EINVAL;

return -1;

}

return _modbus_receive_msg(ctx, rsp, MSG_CONFIRMATION);

}

static int check_confirmation(modbus_t *ctx, uint8_t *req,

uint8_t *rsp, int rsp_length)

{

int rc;

int rsp_length_computed;

const int offset = ctx->backend->header_length;

const int function = rsp[offset];

if (ctx->backend->pre_check_confirmation) {

rc = ctx->backend->pre_check_confirmation(ctx, req, rsp, rsp_length);

if (rc == -1) {

if (ctx->error_recovery & MODBUS_ERROR_RECOVERY_PROTOCOL) {

_sleep_response_timeout(ctx);

modbus_flush(ctx);

}

return -1;

}

}

rsp_length_computed = compute_response_length_from_request(ctx, req);

/* Exception code */

if (function >= 0x80) {

if (rsp_length == (offset + 2 + (int)ctx->backend->checksum_length) &&

req[offset] == (rsp[offset] - 0x80)) {

/* Valid exception code received */

int exception_code = rsp[offset + 1];

if (exception_code < MODBUS_EXCEPTION_MAX) {

errno = MODBUS_ENOBASE + exception_code;

} else {

errno = EMBBADEXC;

}

_error_print(ctx, NULL);

return -1;

} else {

errno = EMBBADEXC;

_error_print(ctx, NULL);

return -1;

}

}

/* Check length */

if ((rsp_length == rsp_length_computed ||

rsp_length_computed == MSG_LENGTH_UNDEFINED) &&

function < 0x80) {

int req_nb_value;

int rsp_nb_value;

/* Check function code */

if (function != req[offset]) {

if (ctx->debug) {

fprintf(stderr,

"Received function not corresponding to the request (0x%X != 0x%X)\n",

function, req[offset]);

}

if (ctx->error_recovery & MODBUS_ERROR_RECOVERY_PROTOCOL) {

_sleep_response_timeout(ctx);

modbus_flush(ctx);

}

errno = EMBBADDATA;

return -1;

}

/* Check the number of values is corresponding to the request */

switch (function) {

case MODBUS_FC_READ_COILS:

case MODBUS_FC_READ_DISCRETE_INPUTS:

/* Read functions, 8 values in a byte (nb

* of values in the request and byte count in

* the response. */

req_nb_value = (req[offset + 3] << 8) + req[offset + 4];

req_nb_value = (req_nb_value / 8) + ((req_nb_value % 8) ? 1 : 0);

rsp_nb_value = rsp[offset + 1];

break;

case MODBUS_FC_WRITE_AND_READ_REGISTERS:

case MODBUS_FC_READ_HOLDING_REGISTERS:

case MODBUS_FC_READ_INPUT_REGISTERS:

/* Read functions 1 value = 2 bytes */

req_nb_value = (req[offset + 3] << 8) + req[offset + 4];

rsp_nb_value = (rsp[offset + 1] / 2);

break;

case MODBUS_FC_WRITE_MULTIPLE_COILS:

case MODBUS_FC_WRITE_MULTIPLE_REGISTERS:

/* N Write functions */

req_nb_value = (req[offset + 3] << 8) + req[offset + 4];

rsp_nb_value = (rsp[offset + 3] << 8) | rsp[offset + 4];

break;

case MODBUS_FC_REPORT_SLAVE_ID:

/* Report slave ID (bytes received) */

req_nb_value = rsp_nb_value = rsp[offset + 1];

break;

default:

/* 1 Write functions & others */

req_nb_value = rsp_nb_value = 1;

}

if (req_nb_value == rsp_nb_value) {

rc = rsp_nb_value;

} else {

if (ctx->debug) {

fprintf(stderr,

"Quantity not corresponding to the request (%d != %d)\n",

rsp_nb_value, req_nb_value);

}

if (ctx->error_recovery & MODBUS_ERROR_RECOVERY_PROTOCOL) {

_sleep_response_timeout(ctx);

modbus_flush(ctx);

}

errno = EMBBADDATA;

rc = -1;

}

} else {

if (ctx->debug) {

fprintf(stderr,

"Message length not corresponding to the computed length (%d != %d)\n",

rsp_length, rsp_length_computed);

}

if (ctx->error_recovery & MODBUS_ERROR_RECOVERY_PROTOCOL) {

_sleep_response_timeout(ctx);

modbus_flush(ctx);

}

errno = EMBBADDATA;

rc = -1;

}

return rc;

}

static int response_io_status(uint8_t *tab_io_status,

int address, int nb,

uint8_t *rsp, int offset)

{

int shift = 0;

/* Instead of byte (not allowed in Win32) */

int one_byte = 0;

int i;

for (i = address; i < address + nb; i++) {

one_byte |= tab_io_status[i] << shift;

if (shift == 7) {

/* Byte is full */

rsp[offset++] = one_byte;

one_byte = shift = 0;

} else {

shift++;

}

}

if (shift != 0)

rsp[offset++] = one_byte;

return offset;

}

/* Build the exception response */

static int response_exception(modbus_t *ctx, sft_t *sft,

int exception_code, uint8_t *rsp,

unsigned int to_flush,

const char* template, ...)

{

int rsp_length;

/* Print debug message */

if (ctx->debug) {

va_list ap;

va_start(ap, template);

vfprintf(stderr, template, ap);

va_end(ap);

}

/* Flush if required */

if (to_flush) {

_sleep_response_timeout(ctx);

modbus_flush(ctx);

}

/* Build exception response */

sft->function = sft->function + 0x80;

rsp_length = ctx->backend->build_response_basis(sft, rsp);

rsp[rsp_length++] = exception_code;

return rsp_length;

}

/* Send a response to the received request.

Analyses the request and constructs a response.

If an error occurs, this function construct the response

accordingly.

*/

int modbus_reply(modbus_t *ctx, const uint8_t *req,

int req_length, modbus_mapping_t *mb_mapping)

{

int offset;

int slave;

int function;

uint16_t address;

uint8_t rsp[MAX_MESSAGE_LENGTH];

int rsp_length = 0;

sft_t sft;

if (ctx == NULL) {

errno = EINVAL;

return -1;

}

offset = ctx->backend->header_length;

slave = req[offset - 1];

function = req[offset];

address = (req[offset + 1] << 8) + req[offset + 2];

sft.slave = slave;

sft.function = function;

sft.t_id = ctx->backend->prepare_response_tid(req, &req_length);

/* Data are flushed on illegal number of values errors. */

switch (function) {

case MODBUS_FC_READ_COILS:

case MODBUS_FC_READ_DISCRETE_INPUTS: {

unsigned int is_input = (function == MODBUS_FC_READ_DISCRETE_INPUTS);

int start_bits = is_input ? mb_mapping->start_input_bits : mb_mapping->start_bits;

int nb_bits = is_input ? mb_mapping->nb_input_bits : mb_mapping->nb_bits;

uint8_t *tab_bits = is_input ? mb_mapping->tab_input_bits : mb_mapping->tab_bits;

const char * const name = is_input ? "read_input_bits" : "read_bits";

int nb = (req[offset + 3] << 8) + req[offset + 4];

/* The mapping can be shifted to reduce memory consumption and it

doesn't always start at address zero. */

int mapping_address = address - start_bits;

if (nb < 1 || MODBUS_MAX_READ_BITS < nb) {

rsp_length = response_exception(

ctx, &sft, MODBUS_EXCEPTION_ILLEGAL_DATA_VALUE, rsp, TRUE,

"Illegal nb of values %d in %s (max %d)\n",

nb, name, MODBUS_MAX_READ_BITS);

} else if (mapping_address < 0 || (mapping_address + nb) > nb_bits) {

rsp_length = response_exception(

ctx, &sft,

MODBUS_EXCEPTION_ILLEGAL_DATA_ADDRESS, rsp, FALSE,

"Illegal data address 0x%0X in %s\n",

mapping_address < 0 ? address : address + nb, name);

} else {

rsp_length = ctx->backend->build_response_basis(&sft, rsp);

rsp[rsp_length++] = (nb / 8) + ((nb % 8) ? 1 : 0);

rsp_length = response_io_status(tab_bits, mapping_address, nb,

rsp, rsp_length);

}

}

break;

case MODBUS_FC_READ_HOLDING_REGISTERS:

case MODBUS_FC_READ_INPUT_REGISTERS: {

unsigned int is_input = (function == MODBUS_FC_READ_INPUT_REGISTERS);

int start_registers = is_input ? mb_mapping->start_input_registers : mb_mapping->start_registers;

int nb_registers = is_input ? mb_mapping->nb_input_registers : mb_mapping->nb_registers;

uint16_t *tab_registers = is_input ? mb_mapping->tab_input_registers : mb_mapping->tab_registers;

const char * const name = is_input ? "read_input_registers" : "read_registers";

int nb = (req[offset + 3] << 8) + req[offset + 4];

/* The mapping can be shifted to reduce memory consumption and it

doesn't always start at address zero. */

int mapping_address = address - start_registers;

if (nb < 1 || MODBUS_MAX_READ_REGISTERS < nb) {

rsp_length = response_exception(

ctx, &sft, MODBUS_EXCEPTION_ILLEGAL_DATA_VALUE, rsp, TRUE,

"Illegal nb of values %d in %s (max %d)\n",

nb, name, MODBUS_MAX_READ_REGISTERS);

} else if (mapping_address < 0 || (mapping_address + nb) > nb_registers) {

rsp_length = response_exception(

ctx, &sft, MODBUS_EXCEPTION_ILLEGAL_DATA_ADDRESS, rsp, FALSE,

"Illegal data address 0x%0X in %s\n",

mapping_address < 0 ? address : address + nb, name);

} else {

int i;

rsp_length = ctx->backend->build_response_basis(&sft, rsp);

rsp[rsp_length++] = nb << 1;

for (i = mapping_address; i < mapping_address + nb; i++) {

rsp[rsp_length++] = tab_registers[i] >> 8;

rsp[rsp_length++] = tab_registers[i] & 0xFF;

}

}

}

break;

case MODBUS_FC_WRITE_SINGLE_COIL: {

int mapping_address = address - mb_mapping->start_bits;

if (mapping_address < 0 || mapping_address >= mb_mapping->nb_bits) {

rsp_length = response_exception(

ctx, &sft, MODBUS_EXCEPTION_ILLEGAL_DATA_ADDRESS, rsp, FALSE,

"Illegal data address 0x%0X in write_bit\n",

address);

} else {

int data = (req[offset + 3] << 8) + req[offset + 4];

if (data == 0xFF00 || data == 0x0) {

mb_mapping->tab_bits[mapping_address] = data ? ON : OFF;

memcpy(rsp, req, req_length);

rsp_length = req_length;

} else {

rsp_length = response_exception(

ctx, &sft,

MODBUS_EXCEPTION_ILLEGAL_DATA_VALUE, rsp, FALSE,

"Illegal data value 0x%0X in write_bit request at address %0X\n",

data, address);

}

}

}

break;

case MODBUS_FC_WRITE_SINGLE_REGISTER: {

int mapping_address = address - mb_mapping->start_registers;

if (mapping_address < 0 || mapping_address >= mb_mapping->nb_registers) {

rsp_length = response_exception(

ctx, &sft,

MODBUS_EXCEPTION_ILLEGAL_DATA_ADDRESS, rsp, FALSE,

"Illegal data address 0x%0X in write_register\n",

address);

} else {

int data = (req[offset + 3] << 8) + req[offset + 4];

mb_mapping->tab_registers[mapping_address] = data;

memcpy(rsp, req, req_length);

rsp_length = req_length;

}

}

break;

case MODBUS_FC_WRITE_MULTIPLE_COILS: {

int nb = (req[offset + 3] << 8) + req[offset + 4];

int nb_bits = req[offset + 5];

int mapping_address = address - mb_mapping->start_bits;

if (nb < 1 || MODBUS_MAX_WRITE_BITS < nb || nb_bits * 8 < nb) {

/* May be the indication has been truncated on reading because of

* invalid address (eg. nb is 0 but the request contains values to

* write) so it's necessary to flush. */

rsp_length = response_exception(

ctx, &sft, MODBUS_EXCEPTION_ILLEGAL_DATA_VALUE, rsp, TRUE,

"Illegal number of values %d in write_bits (max %d)\n",

nb, MODBUS_MAX_WRITE_BITS);

} else if (mapping_address < 0 ||

(mapping_address + nb) > mb_mapping->nb_bits) {

rsp_length = response_exception(

ctx, &sft,

MODBUS_EXCEPTION_ILLEGAL_DATA_ADDRESS, rsp, FALSE,

"Illegal data address 0x%0X in write_bits\n",

mapping_address < 0 ? address : address + nb);

} else {

/* 6 = byte count */

modbus_set_bits_from_bytes(mb_mapping->tab_bits, mapping_address, nb,

&req[offset + 6]);

rsp_length = ctx->backend->build_response_basis(&sft, rsp);

/* 4 to copy the bit address (2) and the quantity of bits */

memcpy(rsp + rsp_length, req + rsp_length, 4);

rsp_length += 4;

}

}

break;

case MODBUS_FC_WRITE_MULTIPLE_REGISTERS: {

int nb = (req[offset + 3] << 8) + req[offset + 4];

int nb_bytes = req[offset + 5];

int mapping_address = address - mb_mapping->start_registers;

if (nb < 1 || MODBUS_MAX_WRITE_REGISTERS < nb || nb_bytes != nb * 2) {

rsp_length = response_exception(

ctx, &sft, MODBUS_EXCEPTION_ILLEGAL_DATA_VALUE, rsp, TRUE,

"Illegal number of values %d in write_registers (max %d)\n",

nb, MODBUS_MAX_WRITE_REGISTERS);

} else if (mapping_address < 0 ||

(mapping_address + nb) > mb_mapping->nb_registers) {

rsp_length = response_exception(

ctx, &sft, MODBUS_EXCEPTION_ILLEGAL_DATA_ADDRESS, rsp, FALSE,

"Illegal data address 0x%0X in write_registers\n",

mapping_address < 0 ? address : address + nb);

} else {

int i, j;

for (i = mapping_address, j = 6; i < mapping_address + nb; i++, j += 2) {

/* 6 and 7 = first value */

mb_mapping->tab_registers[i] =

(req[offset + j] << 8) + req[offset + j + 1];

}

rsp_length = ctx->backend->build_response_basis(&sft, rsp);

/* 4 to copy the address (2) and the no. of registers */

memcpy(rsp + rsp_length, req + rsp_length, 4);

rsp_length += 4;

}

}

break;

case MODBUS_FC_REPORT_SLAVE_ID: {

int str_len;

int byte_count_pos;

rsp_length = ctx->backend->build_response_basis(&sft, rsp);

/* Skip byte count for now */

byte_count_pos = rsp_length++;

rsp[rsp_length++] = _REPORT_SLAVE_ID;

/* Run indicator status to ON */

rsp[rsp_length++] = 0xFF;

/* LMB + length of LIBMODBUS_VERSION_STRING */

str_len = 3 + strlen(LIBMODBUS_VERSION_STRING);

memcpy(rsp + rsp_length, "LMB" LIBMODBUS_VERSION_STRING, str_len);

rsp_length += str_len;

rsp[byte_count_pos] = rsp_length - byte_count_pos - 1;

}

break;

case MODBUS_FC_READ_EXCEPTION_STATUS:

if (ctx->debug) {

fprintf(stderr, "FIXME Not implemented\n");

}

errno = ENOPROTOOPT;

return -1;

break;

case MODBUS_FC_MASK_WRITE_REGISTER: {

int mapping_address = address - mb_mapping->start_registers;

if (mapping_address < 0 || mapping_address >= mb_mapping->nb_registers) {

rsp_length = response_exception(

ctx, &sft, MODBUS_EXCEPTION_ILLEGAL_DATA_ADDRESS, rsp, FALSE,

"Illegal data address 0x%0X in write_register\n",

address);

} else {

uint16_t data = mb_mapping->tab_registers[mapping_address];

uint16_t and = (req[offset + 3] << 8) + req[offset + 4];

uint16_t or = (req[offset + 5] << 8) + req[offset + 6];

data = (data & and) | (or & (~and));

mb_mapping->tab_registers[mapping_address] = data;

memcpy(rsp, req, req_length);

rsp_length = req_length;

}

}

break;

case MODBUS_FC_WRITE_AND_READ_REGISTERS: {

int nb = (req[offset + 3] << 8) + req[offset + 4];

uint16_t address_write = (req[offset + 5] << 8) + req[offset + 6];

int nb_write = (req[offset + 7] << 8) + req[offset + 8];

int nb_write_bytes = req[offset + 9];

int mapping_address = address - mb_mapping->start_registers;

int mapping_address_write = address_write - mb_mapping->start_registers;

if (nb_write < 1 || MODBUS_MAX_WR_WRITE_REGISTERS < nb_write ||

nb < 1 || MODBUS_MAX_WR_READ_REGISTERS < nb ||

nb_write_bytes != nb_write * 2) {

rsp_length = response_exception(

ctx, &sft, MODBUS_EXCEPTION_ILLEGAL_DATA_VALUE, rsp, TRUE,

"Illegal nb of values (W%d, R%d) in write_and_read_registers (max W%d, R%d)\n",

nb_write, nb, MODBUS_MAX_WR_WRITE_REGISTERS, MODBUS_MAX_WR_READ_REGISTERS);

} else if (mapping_address < 0 ||

(mapping_address + nb) > mb_mapping->nb_registers ||

mapping_address < 0 ||

(mapping_address_write + nb_write) > mb_mapping->nb_registers) {

rsp_length = response_exception(

ctx, &sft, MODBUS_EXCEPTION_ILLEGAL_DATA_ADDRESS, rsp, FALSE,

"Illegal data read address 0x%0X or write address 0x%0X write_and_read_registers\n",

mapping_address < 0 ? address : address + nb,

mapping_address_write < 0 ? address_write : address_write + nb_write);

} else {

int i, j;

rsp_length = ctx->backend->build_response_basis(&sft, rsp);

rsp[rsp_length++] = nb << 1;

/* Write first.

10 and 11 are the offset of the first values to write */

for (i = mapping_address_write, j = 10;

i < mapping_address_write + nb_write; i++, j += 2) {

mb_mapping->tab_registers[i] =

(req[offset + j] << 8) + req[offset + j + 1];

}

/* and read the data for the response */

for (i = mapping_address; i < mapping_address + nb; i++) {

rsp[rsp_length++] = mb_mapping->tab_registers[i] >> 8;

rsp[rsp_length++] = mb_mapping->tab_registers[i] & 0xFF;

}

}

}

break;

default:

rsp_length = response_exception(

ctx, &sft, MODBUS_EXCEPTION_ILLEGAL_FUNCTION, rsp, TRUE,

"Unknown Modbus function code: 0x%0X\n", function);

break;

}

/* Suppress any responses when the request was a broadcast */

return (ctx->backend->backend_type == _MODBUS_BACKEND_TYPE_RTU &&

slave == MODBUS_BROADCAST_ADDRESS) ? 0 : send_msg(ctx, rsp, rsp_length);

}

int modbus_reply_exception(modbus_t *ctx, const uint8_t *req,

unsigned int exception_code)

{

int offset;

int slave;

int function;

uint8_t rsp[MAX_MESSAGE_LENGTH];

int rsp_length;

int dummy_length = 99;

sft_t sft;

if (ctx == NULL) {

errno = EINVAL;

return -1;

}

offset = ctx->backend->header_length;

slave = req[offset - 1];

function = req[offset];

sft.slave = slave;

sft.function = function + 0x80;

sft.t_id = ctx->backend->prepare_response_tid(req, &dummy_length);

rsp_length = ctx->backend->build_response_basis(&sft, rsp);

/* Positive exception code */

if (exception_code < MODBUS_EXCEPTION_MAX) {

rsp[rsp_length++] = exception_code;

return send_msg(ctx, rsp, rsp_length);

} else {

errno = EINVAL;

return -1;

}

}

/* Reads IO status */

static int read_io_status(modbus_t *ctx, int function,

int addr, int nb, uint8_t *dest)

{

int rc;

int req_length;

uint8_t req[_MIN_REQ_LENGTH];

uint8_t rsp[MAX_MESSAGE_LENGTH];

req_length = ctx->backend->build_request_basis(ctx, function, addr, nb, req);

rc = send_msg(ctx, req, req_length);

if (rc > 0) {

int i, temp, bit;

int pos = 0;

int offset;

int offset_end;

rc = _modbus_receive_msg(ctx, rsp, MSG_CONFIRMATION);

if (rc == -1)

return -1;

rc = check_confirmation(ctx, req, rsp, rc);

if (rc == -1)

return -1;

offset = ctx->backend->header_length + 2;

offset_end = offset + rc;

for (i = offset; i < offset_end; i++) {

/* Shift reg hi_byte to temp */

temp = rsp[i];

for (bit = 0x01; (bit & 0xff) && (pos < nb);) {

dest[pos++] = (temp & bit) ? TRUE : FALSE;

bit = bit << 1;

}

}

}

return rc;

}

/* Reads the boolean status of bits and sets the array elements

in the destination to TRUE or FALSE (single bits). */

int modbus_read_bits(modbus_t *ctx, int addr, int nb, uint8_t *dest)

{

int rc;

if (ctx == NULL) {

errno = EINVAL;

return -1;

}

if (nb > MODBUS_MAX_READ_BITS) {

if (ctx->debug) {

fprintf(stderr,

"ERROR Too many bits requested (%d > %d)\n",

nb, MODBUS_MAX_READ_BITS);

}

errno = EMBMDATA;

return -1;

}

rc = read_io_status(ctx, MODBUS_FC_READ_COILS, addr, nb, dest);

if (rc == -1)

return -1;

else

return nb;

}

/* Same as modbus_read_bits but reads the remote device input table */

int modbus_read_input_bits(modbus_t *ctx, int addr, int nb, uint8_t *dest)

{

int rc;

if (ctx == NULL) {

errno = EINVAL;

return -1;

}

if (nb > MODBUS_MAX_READ_BITS) {

if (ctx->debug) {

fprintf(stderr,

"ERROR Too many discrete inputs requested (%d > %d)\n",

nb, MODBUS_MAX_READ_BITS);

}

errno = EMBMDATA;

return -1;

}

rc = read_io_status(ctx, MODBUS_FC_READ_DISCRETE_INPUTS, addr, nb, dest);

if (rc == -1)

return -1;

else

return nb;

}

/* Reads the data from a remove device and put that data into an array */

static int read_registers(modbus_t *ctx, int function, int addr, int nb,

uint16_t *dest)

{

int rc;

int req_length;

uint8_t req[_MIN_REQ_LENGTH];

uint8_t rsp[MAX_MESSAGE_LENGTH];

if (nb > MODBUS_MAX_READ_REGISTERS) {

if (ctx->debug) {

fprintf(stderr,

"ERROR Too many registers requested (%d > %d)\n",

nb, MODBUS_MAX_READ_REGISTERS);

}

errno = EMBMDATA;

return -1;

}

req_length = ctx->backend->build_request_basis(ctx, function, addr, nb, req);

rc = send_msg(ctx, req, req_length);

if (rc > 0) {

int offset;

int i;

rc = _modbus_receive_msg(ctx, rsp, MSG_CONFIRMATION);

if (rc == -1)

return -1;

rc = check_confirmation(ctx, req, rsp, rc);

if (rc == -1)

return -1;

offset = ctx->backend->header_length;

for (i = 0; i < rc; i++) {

/* shift reg hi_byte to temp OR with lo_byte */

dest[i] = (rsp[offset + 2 + (i << 1)] << 8) |

rsp[offset + 3 + (i << 1)];

}

}

return rc;

}

/* Reads the holding registers of remote device and put the data into an

array */

int modbus_read_registers(modbus_t *ctx, int addr, int nb, uint16_t *dest)

{

int status;

if (ctx == NULL) {

errno = EINVAL;

return -1;

}

if (nb > MODBUS_MAX_READ_REGISTERS) {

if (ctx->debug) {

fprintf(stderr,

"ERROR Too many registers requested (%d > %d)\n",

nb, MODBUS_MAX_READ_REGISTERS);

}

errno = EMBMDATA;

return -1;

}

status = read_registers(ctx, MODBUS_FC_READ_HOLDING_REGISTERS,

addr, nb, dest);

return status;

}

/* Reads the input registers of remote device and put the data into an array */

int modbus_read_input_registers(modbus_t *ctx, int addr, int nb,

uint16_t *dest)

{

int status;

if (ctx == NULL) {

errno = EINVAL;

return -1;

}

if (nb > MODBUS_MAX_READ_REGISTERS) {

fprintf(stderr,

"ERROR Too many input registers requested (%d > %d)\n",

nb, MODBUS_MAX_READ_REGISTERS);

errno = EMBMDATA;

return -1;

}

status = read_registers(ctx, MODBUS_FC_READ_INPUT_REGISTERS,

addr, nb, dest);

return status;

}

/* Write a value to the specified register of the remote device.

Used by write_bit and write_register */

static int write_single(modbus_t *ctx, int function, int addr, const uint16_t value)

{

int rc;

int req_length;

uint8_t req[_MIN_REQ_LENGTH];

if (ctx == NULL) {

errno = EINVAL;

return -1;

}

req_length = ctx->backend->build_request_basis(ctx, function, addr, (int) value, req);

rc = send_msg(ctx, req, req_length);

if (rc > 0) {

/* Used by write_bit and write_register */

uint8_t rsp[MAX_MESSAGE_LENGTH];

rc = _modbus_receive_msg(ctx, rsp, MSG_CONFIRMATION);

if (rc == -1)

return -1;

rc = check_confirmation(ctx, req, rsp, rc);

}

return rc;

}

/* Turns ON or OFF a single bit of the remote device */

int modbus_write_bit(modbus_t *ctx, int addr, int status)

{

if (ctx == NULL) {

errno = EINVAL;

return -1;

}

return write_single(ctx, MODBUS_FC_WRITE_SINGLE_COIL, addr,

status ? 0xFF00 : 0);

}

/* Writes a value in one register of the remote device */

int modbus_write_register(modbus_t *ctx, int addr, const uint16_t value)

{

if (ctx == NULL) {

errno = EINVAL;

return -1;

}

return write_single(ctx, MODBUS_FC_WRITE_SINGLE_REGISTER, addr, value);

}

/* Write the bits of the array in the remote device */

int modbus_write_bits(modbus_t *ctx, int addr, int nb, const uint8_t *src)

{

int rc;

int i;

int byte_count;

int req_length;

int bit_check = 0;

int pos = 0;

uint8_t req[MAX_MESSAGE_LENGTH];

if (ctx == NULL) {

errno = EINVAL;

return -1;

}

if (nb > MODBUS_MAX_WRITE_BITS) {

if (ctx->debug) {

fprintf(stderr, "ERROR Writing too many bits (%d > %d)\n",

nb, MODBUS_MAX_WRITE_BITS);

}

errno = EMBMDATA;

return -1;

}

req_length = ctx->backend->build_request_basis(ctx,

MODBUS_FC_WRITE_MULTIPLE_COILS,

addr, nb, req);

byte_count = (nb / 8) + ((nb % 8) ? 1 : 0);

req[req_length++] = byte_count;

for (i = 0; i < byte_count; i++) {

int bit;

bit = 0x01;

req[req_length] = 0;

while ((bit & 0xFF) && (bit_check++ < nb)) {

if (src[pos++])

req[req_length] |= bit;

else

req[req_length] &=~ bit;

bit = bit << 1;

}

req_length++;

}

rc = send_msg(ctx, req, req_length);

if (rc > 0) {

uint8_t rsp[MAX_MESSAGE_LENGTH];

rc = _modbus_receive_msg(ctx, rsp, MSG_CONFIRMATION);

if (rc == -1)

return -1;

rc = check_confirmation(ctx, req, rsp, rc);

}

return rc;

}

/* Write the values from the array to the registers of the remote device */

int modbus_write_registers(modbus_t *ctx, int addr, int nb, const uint16_t *src)

{

int rc;

int i;

int req_length;

int byte_count;

uint8_t req[MAX_MESSAGE_LENGTH];

if (ctx == NULL) {

errno = EINVAL;

return -1;

}

if (nb > MODBUS_MAX_WRITE_REGISTERS) {

if (ctx->debug) {

fprintf(stderr,

"ERROR Trying to write to too many registers (%d > %d)\n",

nb, MODBUS_MAX_WRITE_REGISTERS);

}

errno = EMBMDATA;

return -1;

}

req_length = ctx->backend->build_request_basis(ctx,

MODBUS_FC_WRITE_MULTIPLE_REGISTERS,

addr, nb, req);

byte_count = nb * 2;

req[req_length++] = byte_count;

for (i = 0; i < nb; i++) {

req[req_length++] = src[i] >> 8;

req[req_length++] = src[i] & 0x00FF;

}

rc = send_msg(ctx, req, req_length);

if (rc > 0) {

uint8_t rsp[MAX_MESSAGE_LENGTH];

rc = _modbus_receive_msg(ctx, rsp, MSG_CONFIRMATION);

if (rc == -1)

return -1;

rc = check_confirmation(ctx, req, rsp, rc);

}

return rc;

}

int modbus_mask_write_register(modbus_t *ctx, int addr, uint16_t and_mask, uint16_t or_mask)

{

int rc;

int req_length;

/* The request length can not exceed _MIN_REQ_LENGTH - 2 and 4 bytes to

* store the masks. The ugly substraction is there to remove the 'nb' value

* (2 bytes) which is not used. */

uint8_t req[_MIN_REQ_LENGTH + 2];

req_length = ctx->backend->build_request_basis(ctx,

MODBUS_FC_MASK_WRITE_REGISTER,

addr, 0, req);

/* HACKISH, count is not used */

req_length -= 2;

req[req_length++] = and_mask >> 8;

req[req_length++] = and_mask & 0x00ff;

req[req_length++] = or_mask >> 8;

req[req_length++] = or_mask & 0x00ff;

rc = send_msg(ctx, req, req_length);

if (rc > 0) {

/* Used by write_bit and write_register */

uint8_t rsp[MAX_MESSAGE_LENGTH];

rc = _modbus_receive_msg(ctx, rsp, MSG_CONFIRMATION);

if (rc == -1)

return -1;

rc = check_confirmation(ctx, req, rsp, rc);

}

return rc;

}

/* Write multiple registers from src array to remote device and read multiple

registers from remote device to dest array. */

int modbus_write_and_read_registers(modbus_t *ctx,

int write_addr, int write_nb,

const uint16_t *src,

int read_addr, int read_nb,

uint16_t *dest)

{

int rc;

int req_length;

int i;

int byte_count;

uint8_t req[MAX_MESSAGE_LENGTH];

uint8_t rsp[MAX_MESSAGE_LENGTH];

if (ctx == NULL) {

errno = EINVAL;

return -1;

}

if (write_nb > MODBUS_MAX_WR_WRITE_REGISTERS) {

if (ctx->debug) {

fprintf(stderr,

"ERROR Too many registers to write (%d > %d)\n",

write_nb, MODBUS_MAX_WR_WRITE_REGISTERS);

}

errno = EMBMDATA;

return -1;

}

if (read_nb > MODBUS_MAX_WR_READ_REGISTERS) {

if (ctx->debug) {

fprintf(stderr,

"ERROR Too many registers requested (%d > %d)\n",

read_nb, MODBUS_MAX_WR_READ_REGISTERS);

}

errno = EMBMDATA;

return -1;

}

req_length = ctx->backend->build_request_basis(ctx,

MODBUS_FC_WRITE_AND_READ_REGISTERS,

read_addr, read_nb, req);

req[req_length++] = write_addr >> 8;

req[req_length++] = write_addr & 0x00ff;

req[req_length++] = write_nb >> 8;

req[req_length++] = write_nb & 0x00ff;

byte_count = write_nb * 2;

req[req_length++] = byte_count;

for (i = 0; i < write_nb; i++) {

req[req_length++] = src[i] >> 8;

req[req_length++] = src[i] & 0x00FF;

}

rc = send_msg(ctx, req, req_length);

if (rc > 0) {

int offset;

rc = _modbus_receive_msg(ctx, rsp, MSG_CONFIRMATION);

if (rc == -1)

return -1;

rc = check_confirmation(ctx, req, rsp, rc);

if (rc == -1)

return -1;

offset = ctx->backend->header_length;

for (i = 0; i < rc; i++) {

/* shift reg hi_byte to temp OR with lo_byte */

dest[i] = (rsp[offset + 2 + (i << 1)] << 8) |

rsp[offset + 3 + (i << 1)];

}

}

return rc;

}

/* Send a request to get the slave ID of the device (only available in serial

communication). */

int modbus_report_slave_id(modbus_t *ctx, int max_dest, uint8_t *dest)

{

int rc;

int req_length;

uint8_t req[_MIN_REQ_LENGTH];

if (ctx == NULL || max_dest <= 0) {

errno = EINVAL;

return -1;

}

req_length = ctx->backend->build_request_basis(ctx, MODBUS_FC_REPORT_SLAVE_ID,

0, 0, req);

/* HACKISH, addr and count are not used */

req_length -= 4;

rc = send_msg(ctx, req, req_length);

if (rc > 0) {

int i;

int offset;

uint8_t rsp[MAX_MESSAGE_LENGTH];

rc = _modbus_receive_msg(ctx, rsp, MSG_CONFIRMATION);

if (rc == -1)

return -1;

rc = check_confirmation(ctx, req, rsp, rc);

if (rc == -1)

return -1;

offset = ctx->backend->header_length + 2;

/* Byte count, slave id, run indicator status and

additional data. Truncate copy to max_dest. */

for (i=0; i < rc && i < max_dest; i++) {

dest[i] = rsp[offset + i];

}

}

return rc;

}

void _modbus_init_common(modbus_t *ctx)

{

/* Slave and socket are initialized to -1 */

ctx->slave = -1;

ctx->s = -1;

ctx->debug = FALSE;

ctx->error_recovery = MODBUS_ERROR_RECOVERY_NONE;

ctx->response_timeout.tv_sec = 0;

ctx->response_timeout.tv_usec = _RESPONSE_TIMEOUT;

ctx->byte_timeout.tv_sec = 0;

ctx->byte_timeout.tv_usec = _BYTE_TIMEOUT;

ctx->indication_timeout.tv_sec = 0;

ctx->indication_timeout.tv_usec = 0;

}

/* Define the slave number */

int modbus_set_slave(modbus_t *ctx, int slave)

{

if (ctx == NULL) {

errno = EINVAL;

return -1;

}

return ctx->backend->set_slave(ctx, slave);

}

int modbus_get_slave(modbus_t *ctx)

{

if (ctx == NULL) {

errno = EINVAL;

return -1;

}

return ctx->slave;

}

int modbus_set_error_recovery(modbus_t *ctx,

modbus_error_recovery_mode error_recovery)

{

if (ctx == NULL) {

errno = EINVAL;

return -1;

}

/* The type of modbus_error_recovery_mode is unsigned enum */

ctx->error_recovery = (uint8_t) error_recovery;

return 0;

}

int modbus_set_socket(modbus_t *ctx, int s)

{

if (ctx == NULL) {

errno = EINVAL;

return -1;

}

ctx->s = s;

return 0;

}

int modbus_get_socket(modbus_t *ctx)

{

if (ctx == NULL) {

errno = EINVAL;

return -1;

}

return ctx->s;

}

/* Get the timeout interval used to wait for a response */

int modbus_get_response_timeout(modbus_t *ctx, uint32_t *to_sec, uint32_t *to_usec)

{

if (ctx == NULL) {

errno = EINVAL;

return -1;

}

*to_sec = ctx->response_timeout.tv_sec;

*to_usec = ctx->response_timeout.tv_usec;

return 0;

}

int modbus_set_response_timeout(modbus_t *ctx, uint32_t to_sec, uint32_t to_usec)

{

if (ctx == NULL ||

(to_sec == 0 && to_usec == 0) || to_usec > 999999) {

errno = EINVAL;

return -1;

}

ctx->response_timeout.tv_sec = to_sec;

ctx->response_timeout.tv_usec = to_usec;

return 0;

}

/* Get the timeout interval between two consecutive bytes of a message */

int modbus_get_byte_timeout(modbus_t *ctx, uint32_t *to_sec, uint32_t *to_usec)

{

if (ctx == NULL) {

errno = EINVAL;

return -1;

}

*to_sec = ctx->byte_timeout.tv_sec;

*to_usec = ctx->byte_timeout.tv_usec;

return 0;

}

int modbus_set_byte_timeout(modbus_t *ctx, uint32_t to_sec, uint32_t to_usec)

{

/* Byte timeout can be disabled when both values are zero */

if (ctx == NULL || to_usec > 999999) {

errno = EINVAL;

return -1;

}

ctx->byte_timeout.tv_sec = to_sec;

ctx->byte_timeout.tv_usec = to_usec;

return 0;

}

/* Get the timeout interval used by the server to wait for an indication from a client */

int modbus_get_indication_timeout(modbus_t *ctx, uint32_t *to_sec, uint32_t *to_usec)

{

if (ctx == NULL) {

errno = EINVAL;

return -1;

}

*to_sec = ctx->indication_timeout.tv_sec;

*to_usec = ctx->indication_timeout.tv_usec;

return 0;

}

int modbus_set_indication_timeout(modbus_t *ctx, uint32_t to_sec, uint32_t to_usec)

{

/* Indication timeout can be disabled when both values are zero */

if (ctx == NULL || to_usec > 999999) {

errno = EINVAL;

return -1;

}

ctx->indication_timeout.tv_sec = to_sec;

ctx->indication_timeout.tv_usec = to_usec;

return 0;

}

int modbus_get_header_length(modbus_t *ctx)

{

if (ctx == NULL) {

errno = EINVAL;

return -1;

}

return ctx->backend->header_length;

}

int modbus_connect(modbus_t *ctx)

{

if (ctx == NULL) {

errno = EINVAL;

return -1;

}

return ctx->backend->connect(ctx);

}

void modbus_close(modbus_t *ctx)

{

if (ctx == NULL)

return;

ctx->backend->close(ctx);

}

void modbus_free(modbus_t *ctx)

{

if (ctx == NULL)

return;

ctx->backend->free(ctx);

}

int modbus_set_debug(modbus_t *ctx, int flag)

{

if (ctx == NULL) {

errno = EINVAL;

return -1;

}

ctx->debug = flag;

return 0;

}

/* Allocates 4 arrays to store bits, input bits, registers and inputs

registers. The pointers are stored in modbus_mapping structure.

The modbus_mapping_new_start_address() function shall return the new allocated

structure if successful. Otherwise it shall return NULL and set errno to

ENOMEM. */

modbus_mapping_t* modbus_mapping_new_start_address(

unsigned int start_bits, unsigned int nb_bits,

unsigned int start_input_bits, unsigned int nb_input_bits,

unsigned int start_registers, unsigned int nb_registers,

unsigned int start_input_registers, unsigned int nb_input_registers)

{

modbus_mapping_t *mb_mapping;

mb_mapping = (modbus_mapping_t *)malloc(sizeof(modbus_mapping_t));

if (mb_mapping == NULL) {

return NULL;

}

/* 0X */

mb_mapping->nb_bits = nb_bits;

mb_mapping->start_bits = start_bits;

if (nb_bits == 0) {

mb_mapping->tab_bits = NULL;

} else {

/* Negative number raises a POSIX error */

mb_mapping->tab_bits =

(uint8_t *) malloc(nb_bits * sizeof(uint8_t));

if (mb_mapping->tab_bits == NULL) {

free(mb_mapping);

return NULL;

}

memset(mb_mapping->tab_bits, 0, nb_bits * sizeof(uint8_t));

}

/* 1X */

mb_mapping->nb_input_bits = nb_input_bits;

mb_mapping->start_input_bits = start_input_bits;

if (nb_input_bits == 0) {

mb_mapping->tab_input_bits = NULL;

} else {

mb_mapping->tab_input_bits =

(uint8_t *) malloc(nb_input_bits * sizeof(uint8_t));

if (mb_mapping->tab_input_bits == NULL) {

free(mb_mapping->tab_bits);

free(mb_mapping);

return NULL;

}

memset(mb_mapping->tab_input_bits, 0, nb_input_bits * sizeof(uint8_t));

}

/* 4X */

mb_mapping->nb_registers = nb_registers;

mb_mapping->start_registers = start_registers;

if (nb_registers == 0) {

mb_mapping->tab_registers = NULL;

} else {

mb_mapping->tab_registers =

(uint16_t *) malloc(nb_registers * sizeof(uint16_t));

if (mb_mapping->tab_registers == NULL) {

free(mb_mapping->tab_input_bits);

free(mb_mapping->tab_bits);

free(mb_mapping);

return NULL;

}

memset(mb_mapping->tab_registers, 0, nb_registers * sizeof(uint16_t));

}

/* 3X */

mb_mapping->nb_input_registers = nb_input_registers;

mb_mapping->start_input_registers = start_input_registers;

if (nb_input_registers == 0) {

mb_mapping->tab_input_registers = NULL;

} else {

mb_mapping->tab_input_registers =

(uint16_t *) malloc(nb_input_registers * sizeof(uint16_t));

if (mb_mapping->tab_input_registers == NULL) {

free(mb_mapping->tab_registers);

free(mb_mapping->tab_input_bits);

free(mb_mapping->tab_bits);

free(mb_mapping);

return NULL;

}

memset(mb_mapping->tab_input_registers, 0,

nb_input_registers * sizeof(uint16_t));

}

return mb_mapping;

}

modbus_mapping_t* modbus_mapping_new(int nb_bits, int nb_input_bits,

int nb_registers, int nb_input_registers)

{

return modbus_mapping_new_start_address(

0, nb_bits, 0, nb_input_bits, 0, nb_registers, 0, nb_input_registers);

}

/* Frees the 4 arrays */

void modbus_mapping_free(modbus_mapping_t *mb_mapping)

{

if (mb_mapping == NULL) {

return;

}

free(mb_mapping->tab_input_registers);

free(mb_mapping->tab_registers);

free(mb_mapping->tab_input_bits);

free(mb_mapping->tab_bits);

free(mb_mapping);

}

#ifndef HAVE_STRLCPY

/*

* Function strlcpy was originally developed by

* Todd C. Miller to simplify writing secure code.

* See ftp://ftp.openbsd.org/pub/OpenBSD/src/lib/libc/string/strlcpy.3

* for more information.

*

* Thank you Ulrich Drepper... not!

*

* Copy src to string dest of size dest_size. At most dest_size-1 characters

* will be copied. Always NUL terminates (unless dest_size == 0). Returns

* strlen(src); if retval >= dest_size, truncation occurred.

*/

size_t strlcpy(char *dest, const char *src, size_t dest_size)

{

register char *d = dest;

register const char *s = src;

register size_t n = dest_size;

/* Copy as many bytes as will fit */

if (n != 0 && --n != 0) {

do {

if ((*d++ = *s++) == 0)

break;

} while (--n != 0);

}

/* Not enough room in dest, add NUL and traverse rest of src */

if (n == 0) {

if (dest_size != 0)

*d = '\0'; /* NUL-terminate dest */

while (*s++)

;

}

return (s - src - 1); /* count does not include NUL */

}

#endif

LibModbus库实际工程应用

首先要下载安装VisualStudio2019或者VisualStudio2022,下载连接如下:

https://visualstudio.microsoft.com/zh-hans/downloads/https://visualstudio.microsoft.com/zh-hans/downloads/

1、TIA中新建项目插入PLC 1214C,PLC属性设置如上所示IP地址为192.168.1.214。DB块中数据如下图所示,远程连接地址设置为192.168.1.106,不设置代表任何客户端都可连接。

2、编写ModbusTCP Server端程序,程序如下图所示。

3、Modbus通信数据地址隐射为M100,如下图所示数据长度映射600个字。

4、监控表中添加M100开始的数据监控表。如下图所示。

5、打开VisualStudio2019新建名为“MFCApplicationMultiLineTest”的MFC项目。将modbus.h头文件增加到项目MFCApplicationMultiLineTest.CPP文件中,如下图所示。

6、新建如下全局变量用于通信和线程管理。

#define LOOP 1

#define CLIENT_ID 20

#define ADDRESS_START 40001

#define ADDRESS_END 40101

#define ADDRESS_MAX 40201

#define ADDRESS_SUPERMAX 40301

#define PI 3.1415926

threadInfo Info;

CMutex cmtex;

BOOL ThreadKiller = FALSE;

BOOL ForKiller = FALSE;

HANDLE hMyThread;

BOOL ModbusThreadKiller = FALSE;

BOOL ModbusLoop = FALSE;

BOOL ServerConnectFailedFlag = FALSE;

int nb_fail;

int nb_loop;

int addr;

int addr_float = 100;

int addr_float_supermax = 200;

int nb;

int sel;

int flnb;

int spnb;

int nCount;

CString strfloat;

modbus_t* ctx;

uint8_t * tab_rq_bits;

uint8_t * tab_rp_bits;

uint16_t* tab_rq_registers;

uint16_t* tab_rp_registers;

uint16_t* tab_rw_registers;

uint16_t* tab_float_registers;

uint16_t* tab_float_write_registers;

float * read_float_registers;

float * write_float_registers;

CRect rcClientOld;

CRect rcClientNew;

7、在OnInitDialog()初始化函数中加入如下代码。窗口打开后即可连接ModbusTCP服务器端。

ctx = modbus_new_tcp("192.168.1.214", 502);

modbus_set_debug(ctx, TRUE);

modbus_set_slave(ctx, CLIENT_ID);

modbus_set_response_timeout(ctx, 10, 1000000);

if (modbus_connect(ctx) == -1)

{

fprintf(stderr, "Connection failed: %s\n", modbus_strerror(errno));

printf("Connection failed: %s\n", modbus_strerror(errno));

OutputDebugString(_T("Connection failed : % s\n"));

AfxMessageBox(_T("Modbus Server Conneect Failed!"), MB_ICONINFORMATION);

modbus_close(ctx);

modbus_free(ctx);

ServerConnectFailedFlag = TRUE;

return -1;

}

else

{

AfxMessageBox(_T("Modbus Server Conneect Success!"), MB_ICONINFORMATION);

ServerConnectFailedFlag = FALSE;

}

SetTimer(1, 1000, NULL);

/*ModbusTCP通讯寄存器内存分配和内存空间初始化*/

nb = ADDRESS_END - ADDRESS_START;//40001-4101为int

flnb = ADDRESS_MAX - ADDRESS_END;//40101-40201为float

spnb = ADDRESS_SUPERMAX - ADDRESS_MAX;//40201-40301为float

tab_rq_bits = (uint8_t*)malloc(nb * sizeof(uint8_t));

memset(tab_rq_bits,0, nb * sizeof(uint8_t));

tab_rp_bits = (uint8_t*)malloc(nb * sizeof(uint8_t));

memset(tab_rp_bits,0, nb * sizeof(uint8_t));

tab_rq_registers = (uint16_t*)malloc(nb * sizeof(uint16_t));

memset(tab_rq_registers,0, nb * sizeof(uint16_t));

tab_rp_registers = (uint16_t*)malloc(nb * sizeof(uint16_t));

memset(tab_rp_registers,0, nb * sizeof(uint16_t));

tab_rw_registers = (uint16_t*)malloc(nb * sizeof(uint16_t));

memset(tab_rw_registers,0, nb * sizeof(uint16_t));

tab_float_registers = (uint16_t*)malloc(2 * flnb * sizeof(uint16_t));

memset(tab_float_registers,0, 2 * flnb * sizeof(uint16_t));

read_float_registers = (float*)malloc(flnb * sizeof(float));

memset(read_float_registers,0, flnb * sizeof(float));

write_float_registers = (float*)malloc((flnb) * sizeof(float));

memset(write_float_registers,0, (flnb) * sizeof(float));

tab_float_write_registers = (uint16_t*)malloc(2 * flnb * sizeof(uint16_t));

memset(tab_float_write_registers,0, 2 * flnb * sizeof(uint16_t));

//**********************************************************************

GetClientRect(&rcGetold);

OldClientPoint.x = rcGetold.right - rcGetold.left;

OldClientPoint.y = rcGetold.bottom - rcGetold.top;

8、编写相关的通信线程函数ModBusCommunication(LPVOID* pParam)。Libmodbus库函数说明在Libmodbus官网有详细的说明。

UINT CMFCApplicationMultiLineTestDlg::ModBusCommunication(LPVOID* pParam)

{

CMFCApplicationMultiLineTestDlg* modbustcp = (CMFCApplicationMultiLineTestDlg*)pParam;

int rc=0;

int n=0;

int qw=0;

int rq=0;

int wf = 0;

float rfloat = 0;

//COLORREF RGB;

BOOL sendmsg = FALSE;

BOOL dspmsg = FALSE;

CWnd* thHwnd = AfxGetApp()->GetMainWnd();

CSingleLock modbuslock(&cmtex);

modbuslock.Lock();

if (ServerConnectFailedFlag == FALSE)

{

while (ModbusLoop==FALSE)

{

if(ServerConnectFailedFlag==FALSE)

{

if (ModbusThreadKiller)//最好让线程自行退出。

{

DWORD dwExitCode;

GetExitCodeThread(modbustcp->ModbusTcpThread,&dwExitCode);

AfxEndThread(dwExitCode,TRUE);

}

else

{

for (int q = 0; q <= 9; q++)

{

rc = modbus_write_bit(ctx, q, 0);

if (rc != 1)

{

printf("Error modbus_write_bit(%d)\n", rc);

printf("Address=%d,value=%d\n", q, 0);

nb_fail++;

}

else

{

rc = modbus_read_bits(ctx, q, 1, tab_rq_bits);

if (rc != 1 || tab_rq_bits[0] != 0)

{

printf("Error modbus_read_bit single(%d)\n", rc);

printf("Address=%d", q);

nb_fail++;

}

}

Sleep(10);

}

for (qw = 0; qw <= 9; qw++)

{

rc = modbus_write_bit(ctx, qw, 1);//西门子S7-1200 I/O地址对应:0对应Q0.0,1对应Q0.1,8对应Q1.0

if (rc != 1)

{

printf("Error modbus_write_bit(%d)\n", rc);

printf("Address=%d,value=%d\n", qw, 1);

nb_fail++;

}

else

{

rc = modbus_read_bits(ctx, qw, 1, tab_rq_bits);

if (rc != 1 || tab_rq_bits[0] != 1)

{

printf("Error modbus_read_bit single(%d)\n", rc);

printf("Address=%d", qw);

nb_fail++;

}

}

Sleep(10);

}

addr = 0;

//addr=0对应西门子S7-1200 modbus寄存器40001,1对应40002、40001映射S7-1200 MW100,40002映射S7-1200 MW102,

for (rq = 0; rq < nb; rq++)

{

tab_rq_registers[rq] = rq + 820 * sel;

}

//向S7-1200 MD300-MD696寄存器写入100个浮点数据,MD300对应modbus寄存器40201(200),MD696对应寄存器40301

for (wf= 0;wf

{

write_float_registers[wf] = (wf+sel)*(float)PI;

modbus_set_float_dcba(write_float_registers[wf], tab_float_write_registers + 2 * wf);

}

rc = modbus_write_registers(ctx, addr,nb,tab_rq_registers);

if (rc != nb)

{

printf("Error modbus_write_registers(%d)\n", rc);

printf("Address=%d,nb=%d\n", addr,nb);

nb_fail++;

if (sendmsg == FALSE)

{

sendmsg = TRUE;

::PostMessage(thHwnd->GetSafeHwnd(), WM_THREAD_MONITOR, WPARAM(sendmsg), 0);

}

}

else

{

rc = modbus_read_registers(ctx,addr,nb,tab_rp_registers);

if (rc != nb)

{

printf("Error modbus_read_registers(%d)\n", rc);

printf("Address=%d,nb=%d\n", addr, nb);

nb_fail++;

}

else

{

for (int k = 0; k < nb; k++)

{

if (tab_rq_registers[k] != tab_rp_registers[k])

{

printf("Error modbus_read_registers(%d)\n",nb);

printf("Address=%d,Value %d(0x%X!=%d (0x%X))\n",addr,tab_rq_registers[k],tab_rq_registers[k],tab_rp_registers[k],tab_rp_registers[k]);

nb_fail++;

}

}

}

}

/*S7-1200浮点数据写入格式为dcba(100-200定义为float数据对应MD300-MD496,float数据需要分配2*flnb的存储空间)最大写入123个字

写入前50个浮点数据(写入100个浮点数据必须分两次写入)*/

rc = modbus_write_registers(ctx,addr_float,flnb,tab_float_write_registers);

if (rc!=flnb)

{

printf("Error modbus_write_registers(%d)\n",flnb);

printf("Address=%d,flnb=%d\n",addr_float,flnb);

nb_fail++;

}

/*S7-1200浮点数据读取格式为dcba(100-200定义为float数据对应MD300-MD496,float数据需要分配2*flnb的存储空间)最大写入123个字

写入后50个浮点数据(写入100个浮点数据必须分两次写入)*/

rc = modbus_write_registers(ctx, addr_float_supermax, spnb, tab_float_write_registers+spnb);

if (rc != spnb)

{

printf("Error modbus_write_registers(%d)\n", spnb);

printf("Address=%d,flnb=%d\n", addr_float_supermax, spnb);

nb_fail++;

}

/*S7-1200浮点数据读取格式为dcba(100-200定义为float数据对应MD300-MD496,float数据需要分配2*flnb的存储空间)最大读取125个字

读取前50个浮点数据(读取数据必须分两次读取)*/

rc = modbus_read_registers(ctx,addr_float,flnb,tab_float_registers);//读取前50个浮点

if (rc!=flnb)

{

printf("Error modbus_read_registersF(%d)\n", rc);

printf("Address=%d,nb=%d\n", addr_float, flnb);

nb_fail++;

}

rc = modbus_read_registers(ctx, addr_float_supermax, spnb, tab_float_registers+spnb);//读取后50个浮点

if (rc != spnb)

{

printf("error modbus_read_registersb(%d)\n", rc);

printf("address=%d,nb=%d\n", addr_float_supermax, spnb);

nb_fail++;

}

else

{

for (int lst = 0; lst < flnb; lst++)

{

dspmsg = TRUE;

read_float_registers[lst] = modbus_get_float_dcba(tab_float_registers+lst*2);

rfloat = read_float_registers[lst];

//Sleep(1);

::PostMessage(thHwnd->GetSafeHwnd(), WM_SHOUWDATAFROMSIEMENS,WPARAM(dspmsg),LPARAM(lst));

dspmsg = FALSE;

}

rfloat = read_float_registers[0];

strfloat.Format(_T("%.4f"), rfloat);

modbustcp->SetDlgItemText(IDC_EDITREADFLOAT,strfloat);

strfloat.Format(_T("%.4f"), read_float_registers[1]);

modbustcp->SetDlgItemText(IDC_EDITFREADLOAT4, strfloat);

strfloat.Format(_T("%.4f"), read_float_registers[2]);

modbustcp->SetDlgItemText(IDC_EDITREADFLOAT8, strfloat);

}

n++;

modbustcp->SetDlgItemInt(IDC_EDITCACULATE, n);

}

}

}

}

else

{

printf("Connection Failed: %s\n", modbus_strerror(errno));

AfxMessageBox(_T("ModbusServer Connect Failed!"), MB_ICONINFORMATION);

}

n = 0;

modbustcp->SetDlgItemInt(IDC_EDITCACULATE, n);

modbustcp->ModbusTcpThread = NULL;

sendmsg = FALSE;

dspmsg = FALSE;

modbuslock.Unlock();

return 0;

}

9、增加线程启动按钮,在按钮中启动通信线程完成通信。此例程为Libmodbus和S7-1200通信测试例程,写的比较早,没有严格封装。S7-200 PLC 的程序做了严格封装,后面在做介绍。

void CMFCApplicationMultiLineTestDlg::OnBnClickedButtonstart()

{

if (ModbusTcpThread == NULL)

{

ModbusThreadKiller = FALSE;

ModbusLoop = FALSE;

UpdateData(TRUE);

sel = m_select;

SetDlgItemInt(IDC_EDITDSP,sel);

UpdateData(FALSE);

Sleep(50);

ModbusTcpThread = AfxBeginThread((AFX_THREADPROC)ModBusCommunication, this);

}

else

{

AfxMessageBox(_T("ModbusTCP通讯线程已启动,无需重启!"), MB_ICONINFORMATION);

}

}

10、启动MFC程序进行仿真。如下图所示。

11、在博图变量监控表中监控变量,如下图所示。对比发现数据准确无误。

12、合信M226ES与LibModbus之间的通信。合信M226ESModbusTCP协议客户端不需要编写程序,设置好IP地址即可,端口默认502。下面是M226ES Modbus地址映射(默认隐射)。

13、下面为测试的相关视频。

C++和S7-1200 Libmodbus 通信

开启你的Libmodbus之旅吧!

精彩内容

评论可见,请评论后查看内容,谢谢!!!
 您阅读本篇文章共花了: