含有n个未知数

x

1

,

x

2

,

,

x

n

x_1,x_2,\cdots,x_n

x1​,x2​,⋯,xn​的n个线性方程的方程组

{

a

11

x

1

+

a

12

x

2

+

+

a

1

n

x

n

=

b

1

,

a

21

x

1

+

a

22

x

2

+

+

a

2

n

x

n

=

b

2

,

,

a

n

1

x

1

+

a

n

2

x

2

+

+

a

n

n

x

n

=

b

n

,

\begin{cases} a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_1,\\ a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=b_2,\\ \cdots\cdots,\\ a_{n1}x_1+a_{n2}x_2+\cdots+a_{nn}x_n=b_n,\\ \end{cases}

⎧​a11​x1​+a12​x2​+⋯+a1n​xn​=b1​,a21​x1​+a22​x2​+⋯+a2n​xn​=b2​,⋯⋯,an1​x1​+an2​x2​+⋯+ann​xn​=bn​,​

克拉默法则 如果线性方程组的系数矩阵A的行列式不等于零,即

A

=

a

11

a

1

n

a

n

1

a

n

n

0

|A|=\begin{vmatrix} a_{11}&\cdots&a_{1n}\\ \vdots&&\vdots\\ a_{n1}&\cdots&a_{nn} \end{vmatrix} \not=0

∣A∣=

​a11​⋮an1​​⋯⋯​a1n​⋮ann​​

​=0 那么方程组有唯一解

x

1

=

A

1

A

,

x

2

=

A

2

A

,

,

x

n

=

A

n

A

x_1=\frac{|A_1|}{|A|},x_2=\frac{|A_2|}{|A|},\cdots,x_n=\frac{|A_n|}{|A|}

x1​=∣A∣∣A1​∣​,x2​=∣A∣∣A2​∣​,⋯,xn​=∣A∣∣An​∣​

其中

A

j

(

j

=

1

,

2

,

,

n

)

A_j(j=1,2,\cdots,n)

Aj​(j=1,2,⋯,n)是吧系数矩阵A中第

j

j

j列的元素哟好难过方程组右端常数项代替后所得到的n阶矩阵,即

A

j

=

(

a

11

a

1

j

1

b

1

a

1

j

+

1

a

1

n

a

n

1

a

n

j

1

b

n

a

n

j

+

1

a

n

n

)

A_j=\begin{pmatrix} a_{11}&\cdots&a_{1j-1}&b_1&a_{1j+1}&\cdots&a_{1n}\\ \vdots&&\vdots&\vdots&\vdots&&\vdots\\ a_{n1}&\cdots&a_{nj-1}&b_n&a_{nj+1}&\cdots&a_{nn}\\ \end{pmatrix}

Aj​=

​a11​⋮an1​​⋯⋯​a1j−1​⋮anj−1​​b1​⋮bn​​a1j+1​⋮anj+1​​⋯⋯​a1n​⋮ann​​

证明:

把方程组写成矩阵方程

A

x

=

b

A

=

(

a

i

j

)

n

×

n

n

阶矩阵,因

A

0

,故

A

1

存在

x

=

A

1

b

根据逆矩阵的唯一性,知

x

=

A

1

b

是方程组的唯一解向量

x

=

A

A

b

=

1

A

(

A

11

A

21

A

n

1

A

12

A

22

A

n

2

A

1

n

A

2

n

A

n

n

)

(

b

1

b

2

b

n

)

=

1

A

(

b

1

A

11

+

b

2

A

21

+

+

b

n

A

n

1

b

1

A

12

+

b

2

A

22

+

+

b

n

A

n

2

b

1

A

1

n

+

b

2

A

2

n

+

+

b

n

A

n

n

)

x

j

=

1

A

(

b

1

A

1

j

+

b

2

A

2

j

+

+

b

n

A

n

j

)

=

1

A

A

j

(

j

=

1

,

2

,

,

n

)

证明:\\ 把方程组写成矩阵方程 Ax=b\\ A=(a_{ij})_{n\times n}位n阶矩阵,因|A|\not=0,故A^{-1}存在\\ x=A^{-1}b\\ 根据逆矩阵的唯一性,知x=A^{-1}b是方程组的唯一解向量\\ x=\frac{A^*}{|A|}b=\frac{1}{|A|}\begin{pmatrix} A_{11}&A_{21}&\cdots&A_{n1}\\ A_{12}&A_{22}&\cdots&A_{n2}\\ \vdots&\vdots&&\vdots\\ A_{1n}&A_{2n}&\cdots&A_{nn}\\ \end{pmatrix} \begin{pmatrix} b_1\\ b_2\\ \vdots\\ b_n\\ \end{pmatrix}\\ =\frac{1}{|A|}\begin{pmatrix} b_1A_{11}+b_2A_{21}+\cdots+b_nA_{n1}\\ b_1A_{12}+b_2A_{22}+\cdots+b_nA_{n2}\\ \vdots\\ b_1A_{1n}+b_2A_{2n}+\cdots+b_nA_{nn}\\ \end{pmatrix}\\ 即x_j=\frac{1}{|A|}(b_1A_{1j}+b_2A_{2j}+\cdots+b_nA_{nj})=\frac{1}{|A|}|A_j|(j=1,2,\cdots,n)

证明:把方程组写成矩阵方程Ax=bA=(aij​)n×n​位n阶矩阵,因∣A∣=0,故A−1存在x=A−1b根据逆矩阵的唯一性,知x=A−1b是方程组的唯一解向量x=∣A∣A∗​b=∣A∣1​

​A11​A12​⋮A1n​​A21​A22​⋮A2n​​⋯⋯⋯​An1​An2​⋮Ann​​

​b1​b2​⋮bn​​

​=∣A∣1​

​b1​A11​+b2​A21​+⋯+bn​An1​b1​A12​+b2​A22​+⋯+bn​An2​⋮b1​A1n​+b2​A2n​+⋯+bn​Ann​​

​即xj​=∣A∣1​(b1​A1j​+b2​A2j​+⋯+bn​Anj​)=∣A∣1​∣Aj​∣(j=1,2,⋯,n)

例16 用克拉默法则求解线性方程组

{

x

1

x

2

x

3

=

2

2

x

1

x

2

3

x

3

=

1

3

x

1

+

2

x

2

5

x

3

=

0

\begin{cases} x_1-x_2-x_3=2\\ 2x_1-x_2-3x_3=1\\ 3x_1+2x_2-5x_3=0\\ \end{cases}

⎧​x1​−x2​−x3​=22x1​−x2​−3x3​=13x1​+2x2​−5x3​=0​

A

=

1

1

1

2

1

3

3

2

5

=

5

+

9

4

(

3

+

10

6

)

=

3

0

根据克拉默法则,有

x

1

=

A

1

A

=

1

3

2

1

1

1

1

3

0

2

5

=

1

3

(

10

2

5

+

12

)

=

5

x

2

=

A

1

A

=

1

3

1

2

1

2

1

3

3

0

5

=

1

3

(

5

18

+

3

+

20

)

=

0

x

3

=

A

1

A

=

1

3

1

1

2

2

1

1

3

2

0

=

1

3

(

3

+

8

+

6

2

)

=

3

解\\ |A|=\begin{vmatrix} 1&-1&-1\\ 2&-1&-3\\ 3&2&-5 \end{vmatrix} =5+9-4-(3+10-6)=3\not=0\\ 根据克拉默法则,有\\ x_1=\frac{A_1}{|A|}=\frac{1}{3}\begin{vmatrix} 2&-1&-1\\ 1&-1&-3\\ 0&2&-5 \end{vmatrix} =\frac{1}{3}(10-2-5+12)=5\\ x_2=\frac{A_1}{|A|}=\frac{1}{3}\begin{vmatrix} 1&2&-1\\ 2&1&-3\\ 3&0&-5 \end{vmatrix} =\frac{1}{3}(-5-18+3+20)=0\\ x_3=\frac{A_1}{|A|}=\frac{1}{3}\begin{vmatrix} 1&-1&2\\ 2&-1&1\\ 3&2&0 \end{vmatrix} =\frac{1}{3}(-3+8+6-2)=3\\

解∣A∣=

​123​−1−12​−1−3−5​

​=5+9−4−(3+10−6)=3=0根据克拉默法则,有x1​=∣A∣A1​​=31​

​210​−1−12​−1−3−5​

​=31​(10−2−5+12)=5x2​=∣A∣A1​​=31​

​123​210​−1−3−5​

​=31​(−5−18+3+20)=0x3​=∣A∣A1​​=31​

​123​−1−12​210​

​=31​(−3+8+6−2)=3

结语

❓QQ:806797785

⭐️文档笔记地址 https://github.com/gaogzhen/math

参考:

[1]同济大学数学系.工程数学.线性代数 第6版 [M].北京:高等教育出版社,2014.6.p44-46.

[2]同济六版《线性代数》全程教学视频[CP/OL].2020-02-07.p11.

好文推荐

评论可见,请评论后查看内容,谢谢!!!
 您阅读本篇文章共花了: