YOLO系列的算法更新实在太快了,前些天刚学习完YOLOV7,YOLOV8就出来了。今天先理解模型的训练过程,后续再学习V8的网络结构等细节。

YOLOV8源码链接:https://github.com/ultralytics/ultralytics

1 数据格式转换

Wider Face数据格式转YOLO数据格式可以参考我之前写的一篇博客:

https://blog.csdn.net/qq_38964360/article/details/128712287?spm=1001.2014.3001.5502

2 修改相关配置文件

首先是模型配置文件'ultralytics/models/v8/yolov8n.yaml',因为人脸检测是单目标检测,因此该配置文件里的nc应该改成1,部分代码如下:

# Ultralytics YOLO , GPL-3.0 license

# Parameters

nc: 1 # number of classes

depth_multiple: 0.33 # scales module repeats

width_multiple: 0.25 # scales convolution channels

随后仿照 'yolov8/ultralytics/yolo/data/datasets/coco128.yaml' 文件,新建 'yolov8/ultralytics/yolo/data/datasets/wider_face.yaml' 文件,文件内容如下:

# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]

path: /kaxier01/projects/FAS/yolov8/datasets/wider_face # dataset root dir

train: images/train # train images (relative to 'path') 12876 images

val: images/val # val images (relative to 'path') 3226 images

test: # test images (optional)

# Classes

names:

0: face

# Download script/URL (optional)

download:

数据集文件目录如下(images以及labels均由步骤1生成):

最后修改 'yolov8/ultralytics/yolo/configs/default.yaml' 文件中的参数,如:batch size、device、lr、损失权重等,代码如下:

# Ultralytics YOLO , GPL-3.0 license

# Default training settings and hyperparameters for medium-augmentation COCO training

task: "detect" # choices=['detect', 'segment', 'classify', 'init'] # init is a special case. Specify task to run.

mode: "train" # choices=['train', 'val', 'predict'] # mode to run task in.

# Train settings -------------------------------------------------------------------------------------------------------

model: null # i.e. yolov8n.pt, yolov8n.yaml. Path to model file

data: null # i.e. coco128.yaml. Path to data file

epochs: 300 # number of epochs to train for

patience: 50 # TODO: epochs to wait for no observable improvement for early stopping of training

batch: 32 # number of images per batch

imgsz: 640 # size of input images

save: True # save checkpoints

cache: False # True/ram, disk or False. Use cache for data loading

device: 0,1,2,3 # cuda device, i.e. 0 or 0,1,2,3 or cpu. Device to run on

workers: 16 # number of worker threads for data loading

project: null # project name

name: null # experiment name

exist_ok: False # whether to overwrite existing experiment

pretrained: False # whether to use a pretrained model

optimizer: 'SGD' # optimizer to use, choices=['SGD', 'Adam', 'AdamW', 'RMSProp']

verbose: False # whether to print verbose output

seed: 0 # random seed for reproducibility

deterministic: True # whether to enable deterministic mode

single_cls: True # train multi-class data as single-class

image_weights: False # use weighted image selection for training

rect: False # support rectangular training

cos_lr: False # use cosine learning rate scheduler

close_mosaic: 10 # disable mosaic augmentation for final 10 epochs

resume: False # resume training from last checkpoint

# Segmentation

overlap_mask: True # masks should overlap during training

mask_ratio: 4 # mask downsample ratio

# Classification

dropout: 0.0 # use dropout regularization

# Val/Test settings ----------------------------------------------------------------------------------------------------

val: True # validate/test during training

save_json: False # save results to JSON file

save_hybrid: False # save hybrid version of labels (labels + additional predictions)

conf: null # object confidence threshold for detection (default 0.25 predict, 0.001 val)

iou: 0.7 # intersection over union (IoU) threshold for NMS

max_det: 300 # maximum number of detections per image

half: False # use half precision (FP16)

dnn: False # use OpenCV DNN for ONNX inference

plots: True # show plots during training

# Prediction settings --------------------------------------------------------------------------------------------------

source: null # source directory for images or videos

show: False # show results if possible

save_txt: False # save results as .txt file

save_conf: False # save results with confidence scores

save_crop: False # save cropped images with results

hide_labels: False # hide labels

hide_conf: False # hide confidence scores

vid_stride: 1 # video frame-rate stride

line_thickness: 3 # bounding box thickness (pixels)

visualize: False # visualize results

augment: False # apply data augmentation to images

agnostic_nms: False # class-agnostic NMS

retina_masks: False # use retina masks for object detection

# Export settings ------------------------------------------------------------------------------------------------------

format: torchscript # format to export to

keras: False # use Keras

optimize: False # TorchScript: optimize for mobile

int8: False # CoreML/TF INT8 quantization

dynamic: False # ONNX/TF/TensorRT: dynamic axes

simplify: False # ONNX: simplify model

opset: 17 # ONNX: opset version

workspace: 4 # TensorRT: workspace size (GB)

nms: False # CoreML: add NMS

# Hyperparameters ------------------------------------------------------------------------------------------------------

lr0: 0.02 # initial learning rate (SGD=1E-2, Adam=1E-3)

lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf)

momentum: 0.937 # SGD momentum/Adam beta1

weight_decay: 0.0005 # optimizer weight decay 5e-4

warmup_epochs: 3.0 # warmup epochs (fractions ok)

warmup_momentum: 0.8 # warmup initial momentum

warmup_bias_lr: 0.1 # warmup initial bias lr

box: 7.5 # box loss gain

cls: 0.5 # cls loss gain (scale with pixels)

dfl: 1.5 # dfl loss gain

fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)

label_smoothing: 0.0

nbs: 64 # nominal batch size

hsv_h: 0.015 # image HSV-Hue augmentation (fraction)

hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)

hsv_v: 0.4 # image HSV-Value augmentation (fraction)

degrees: 0.0 # image rotation (+/- deg)

translate: 0.1 # image translation (+/- fraction)

scale: 0.5 # image scale (+/- gain)

shear: 0.0 # image shear (+/- deg)

perspective: 0.0 # image perspective (+/- fraction), range 0-0.001

flipud: 0.0 # image flip up-down (probability)

fliplr: 0.5 # image flip left-right (probability)

mosaic: 1.0 # image mosaic (probability)

mixup: 0.0 # image mixup (probability)

copy_paste: 0.0 # segment copy-paste (probability)

# Hydra configs --------------------------------------------------------------------------------------------------------

cfg: null # for overriding defaults.yaml

hydra:

output_subdir: null # disable hydra directory creation

run:

dir: .

# Debug, do not modify -------------------------------------------------------------------------------------------------

v5loader: False # use legacy YOLOv5 dataloader

3 训练及验证

参考源码中的README.md 文件,安装相关依赖库,

pip install ultralytics

模型的训练、验证及预测都有两种实现方式:

1)使用Command Line Interface (CLI)。指令如下:

# 单卡训练

yolo task=detect mode=train model=yolov8n.pt data=coco128.yaml device=0

# 多卡训练

yolo task=detect mode=train model=yolov8n.pt data=coco128.yaml device=\'0,1,2,3\'

# Syntax

yolo task=detect mode=train model=yolov8n.yaml args...

classify predict yolov8n-cls.yaml args...

segment val yolov8n-seg.yaml args...

export yolov8n.pt format=onnx args...

2)使用Python。新建一个脚本,代码如下:

# filename: python_example.py

# dir: yolov8/python_example.py

from ultralytics import YOLO

## 以下模型初始化指令选一个就行

model = YOLO("yolov8/ultralytics/models/v8/yolov8n.yaml") # 从头开始训练

model = YOLO("yolov8/weights/yolov8n.pt") # 或者加载预训练好的模型

# 模型训练

results = model.train(data="yolov8/ultralytics/yolo/data/datasets/wider_face.yaml", epochs=300)

# 模型验证

results = model.val()

# 模型导出

success = model.export(format="onnx")

使用以下指令便可多卡训练模型(我这里用了4卡训练,把default.yaml的device值改为0,1,2,3):

python -m torch.distributed.launch --nproc_per_node 4 --master_port 9527 yolov8/python_example.py

数据集加载相关文件:'yolov8/ultralytics/yolo/data/dataloaders/v5loader.py'

数据增强相关文件:'yolov8/ultralytics/yolo/data/dataloaders/v5augmentations.py'

模型定义相关文件:'yolov8/ultralytics/yolo/engine/model.py'

模型训练相关文件:'yolov8/ultralytics/yolo/engine/trainer.py'

模型训练过程:

模型验证过程:

测试结果:

精彩文章

评论可见,请评论后查看内容,谢谢!!!
 您阅读本篇文章共花了: