目录

一、前言

二、神经网络架构

三、算法实现

         1、导入包

         2、实现类

         3、训练函数

        4、权重参数矩阵初始化

        5、参数矩阵变换向量

         6、向量变换权重参数矩阵

         7、进行梯度下降

                7.1、损失函数

                        7.1.1、前向传播

                7.2、反向传播

        8、预测函数

四、完整代码

 五、手写数字识别

一、前言

        读者需要了解神经网络的基础知识,可以参考神经网络(深度学习,计算机视觉,得分函数,损失函数,前向传播,反向传播,激活函数)

        本文为大家详细的描述了,实现神经网络的逻辑,代码。并且用手写识别来实验,结果基本实现了神经网络的要求。

二、神经网络架构

        想一想:

        1.输入数据:特征值(手写数字识别是像素点,784个特征)

        2.W1,W2,W3矩阵的形状

        3.前向传播

        4.激活函数(用Sigmoid)

        5.反向传播

        6.偏置项

        7.损失()

        8.得出W1,W2,W3对损失有多大影响,公式如下:

        

        算法流程(简便版):

        

         

三、算法实现

         1、导入包

import numpy as np

from Neural_Network_Lab.utils.features import prepare_for_training

from Neural_Network_Lab.utils.hypothesis import sigmoid,sigmoid_gradient

           这里utils包用来封装数据预处理,和Sigmoid函数

"""Add polynomial features to the features set"""

import numpy as np

from .normalize import normalize

def generate_polynomials(dataset, polynomial_degree, normalize_data=False):

"""变换方法:

x1, x2, x1^2, x2^2, x1*x2, x1*x2^2, etc.

"""

features_split = np.array_split(dataset, 2, axis=1)

dataset_1 = features_split[0]

dataset_2 = features_split[1]

(num_examples_1, num_features_1) = dataset_1.shape

(num_examples_2, num_features_2) = dataset_2.shape

if num_examples_1 != num_examples_2:

raise ValueError('Can not generate polynomials for two sets with different number of rows')

if num_features_1 == 0 and num_features_2 == 0:

raise ValueError('Can not generate polynomials for two sets with no columns')

if num_features_1 == 0:

dataset_1 = dataset_2

elif num_features_2 == 0:

dataset_2 = dataset_1

num_features = num_features_1 if num_features_1 < num_examples_2 else num_features_2

dataset_1 = dataset_1[:, :num_features]

dataset_2 = dataset_2[:, :num_features]

polynomials = np.empty((num_examples_1, 0))

for i in range(1, polynomial_degree + 1):

for j in range(i + 1):

polynomial_feature = (dataset_1 ** (i - j)) * (dataset_2 ** j)

polynomials = np.concatenate((polynomials, polynomial_feature), axis=1)

if normalize_data:

polynomials = normalize(polynomials)[0]

return polynomials

import numpy as np

def generate_sinusoids(dataset, sinusoid_degree):

"""

sin(x).

"""

num_examples = dataset.shape[0]

sinusoids = np.empty((num_examples, 0))

for degree in range(1, sinusoid_degree + 1):

sinusoid_features = np.sin(degree * dataset)

sinusoids = np.concatenate((sinusoids, sinusoid_features), axis=1)

return sinusoids

 

"""Normalize features"""

import numpy as np

def normalize(features):

features_normalized = np.copy(features).astype(float)

# 计算均值

features_mean = np.mean(features, 0)

# 计算标准差

features_deviation = np.std(features, 0)

# 标准化操作

if features.shape[0] > 1:

features_normalized -= features_mean

# 防止除以0

features_deviation[features_deviation == 0] = 1

features_normalized /= features_deviation

return features_normalized, features_mean, features_deviation

          数据预处理:

"""Prepares the dataset for training"""

import numpy as np

from .normalize import normalize

from .generate_sinusoids import generate_sinusoids

from .generate_polynomials import generate_polynomials

def prepare_for_training(data, polynomial_degree=0, sinusoid_degree=0, normalize_data=True):

# 计算样本总数

num_examples = data.shape[0]

data_processed = np.copy(data)

# 预处理

features_mean = 0

features_deviation = 0

data_normalized = data_processed

if normalize_data:

(

data_normalized,

features_mean,

features_deviation

) = normalize(data_processed)

data_processed = data_normalized

# 特征变换sinusoidal

if sinusoid_degree > 0:

sinusoids = generate_sinusoids(data_normalized, sinusoid_degree)

data_processed = np.concatenate((data_processed, sinusoids), axis=1)

# 特征变换polynomial

if polynomial_degree > 0:

polynomials = generate_polynomials(data_normalized, polynomial_degree, normalize_data)

data_processed = np.concatenate((data_processed, polynomials), axis=1)

# 加一列1

data_processed = np.hstack((np.ones((num_examples, 1)), data_processed))

return data_processed, features_mean, features_deviation

        Sigmoid函数:

import numpy as np

def sigmoid(matrix):

"""Applies sigmoid function to NumPy matrix"""

return 1 / (1 + np.exp(-matrix))

         2、实现类

        多层感知机 初始化:数据,标签,网络层次(用列表表示如三层[784,25,10]表示输入层784个神经元,25个隐藏层神经元,10个输出层神经元),数据是否标准化处理。

class MultilayerPerceptron:

def __init__(self,data,labels,layers,normalize_data=False):

data_processed = prepare_for_training(data,normalize_data=normalize_data)[0]

self.data = data_processed

self.labels = labels

self.layers = layers # [ 784 ,25 ,10]

self.normalize_data = normalize_data

self.thetas = MultilayerPerceptron.thetas_init(layers)

         3、训练函数

        输入迭代次数,学习率,进行梯度下降算法,更新权重参数矩阵,得到最终的权重参数矩阵,和损失值。矩阵不好进行更新操作,可以把它拉成向量。

def train(self,max_ietrations = 1000,alpha = 0.1):

#方便矩阵更新 拉长 把矩阵拉成向量

unrolled_theta = MultilayerPerceptron.thetas_unroll(self.thetas)

(optimized_theta, cost_history) = MultilayerPerceptron.gradient_descent(self.data,self.labels,unrolled_theta,self.layers,max_ietrations,alpha)

self.thetas = MultilayerPerceptron.thetas_roll(optimized_theta,self.layers)

return self.thetas,cost_history

        4、权重参数矩阵初始化

        根据网络层次可以确定,矩阵的大小,用字典存储。

@staticmethod

def thetas_init(layers):

num_layers = len(layers)

thetas = {} #用字典形式 key:表示第几层 vlues:权重参数矩阵

for layer_index in range(num_layers-1):

'''

会执行两次: 得到两组参数矩阵 25 * 785 , 10 * 26

'''

in_count = layers[layer_index]

out_count = layers[layer_index+1]

#初始化 初始值小

#这里需要考虑偏置项,偏置的个数与输出的个数一样

thetas[layer_index]=np.random.rand(out_count,in_count+1) * 0.05 #加一列输入特征

return thetas

        5、参数矩阵变换向量

        将权重参数矩阵变换成向量

@staticmethod

def thetas_unroll(thetas):

#拼接成一个向量

num_theta_layers = len(thetas)

unrolled_theta = np.array([])

for theta_layer_index in range(num_theta_layers):

unrolled_theta = np.hstack((unrolled_theta,thetas[theta_layer_index].flatten()))

return unrolled_theta

         6、向量变换权重参数矩阵

        后边前向传播时需要进行矩阵乘法,需要变换回来

@staticmethod

def thetas_roll(unrolled_theta,layers):

num_layers = len(layers)

thetas = {}

unrolled_shift = 0

for layer_index in range(num_layers - 1):

in_count = layers[layer_index]

out_count = layers[layer_index + 1]

thetas_width = in_count + 1

thetas_height = out_count

thetas_volume = thetas_width * thetas_height

start_index = unrolled_shift

end_index =unrolled_shift + thetas_volume

layer_theta_unrolled = unrolled_theta[start_index:end_index]

thetas[layer_index] = layer_theta_unrolled.reshape((thetas_height,thetas_width))

unrolled_shift = unrolled_shift + thetas_volume

return thetas

         7、进行梯度下降

                1. 损失函数,计算损失值

                2. 计算梯度值

                3. 更新参数

                那么得先要实现损失函数,计算损失值。

                7.1、损失函数

                        实现损失函数,得到损失值得要实现前向传播走一次

                        7.1.1、前向传播

@staticmethod

def feedforword_propagation(data,thetas,layers):

num_layers = len(layers)

num_examples = data.shape[0]

in_layer_activation = data #输入层

#逐层计算 隐藏层

for layer_index in range(num_layers - 1):

theta = thetas[layer_index]

out_layer_activation = sigmoid(np.dot(in_layer_activation,theta.T)) #输出层

# 正常计算之后是num_examples * 25 ,但是要考虑偏置项 变成num_examples * 26

out_layer_activation = np.hstack((np.ones((num_examples,1)),out_layer_activation))

in_layer_activation = out_layer_activation

#返回输出层结果,不要偏置项

return in_layer_activation[:,1:]

                损失函数:

@staticmethod

def cost_function(data,labels,thetas,layers):

num_layers = len(layers)

num_examples = data.shape[0]

num_labels = layers[-1]

#前向传播走一次

predictions = MultilayerPerceptron.feedforword_propagation(data,thetas,layers)

#制作标签,每一个样本的标签都是one-dot

bitwise_labels = np.zeros((num_examples,num_labels))

for example_index in range(num_examples):

bitwise_labels[example_index][labels[example_index][0]] = 1

#咱们的预测值是概率值y= 7 [0,0,0,0,0,0,1,0,0,0] 在正确值的位置上概率越大越好 在错误值的位置上概率越小越好

bit_set_cost = np.sum(np.log(predictions[bitwise_labels == 1]))

bit_not_set_cost = np.sum(np.log(1 - predictions[bitwise_labels == 0]))

cost = (-1/num_examples) * (bit_set_cost+bit_not_set_cost)

return cost

                7.2、反向传播

                在梯度下降的过程中,要实现参数矩阵的更新,必须要实现反向传播。利用上述的公式,进行运算即可得到。

@staticmethod

def back_propagation(data,labels,thetas,layers):

num_layers = len(layers)

(num_examples,num_features) = data.shape

num_label_types = layers[-1]

deltas = {} # 算出每一层对结果的影响

#初始化

for layer_index in range(num_layers - 1):

in_count = layers[layer_index]

out_count = layers[layer_index + 1]

deltas[layer_index] = np.zeros((out_count,in_count+1)) #25 * 785 10 *26

for example_index in range(num_examples):

layers_inputs = {}

layers_activations = {}

layers_activation = data[example_index,:].reshape((num_features,1))

layers_activations[0] = layers_activation

#逐层计算

for layer_index in range(num_layers - 1):

layer_theta = thetas[layer_index] #得到当前的权重参数值 : 25 *785 10 *26

layer_input = np.dot(layer_theta,layers_activation) # 第一次 得到 25 * 1 第二次: 10 * 1

layers_activation = np.vstack((np.array([[1]]),sigmoid(layer_input))) #完成激活函数,加上一个偏置参数

layers_inputs[layer_index+1] = layer_input # 后一层计算结果

layers_activations[layer_index +1] = layers_activation # 后一层完成激活的结果

output_layer_activation = layers_activation[1:,:]

#计算输出层和结果的差异

delta = {}

#标签处理

bitwise_label = np.zeros((num_label_types,1))

bitwise_label[labels[example_index][0]] = 1

#计算输出结果和真实值之间的差异

delta[num_layers-1] = output_layer_activation - bitwise_label #输出层

#遍历 L,L-1,L-2...2

for layer_index in range(num_layers - 2,0,-1):

layer_theta = thetas[layer_index]

next_delta = delta[layer_index+1]

layer_input = layers_inputs[layer_index]

layer_input = np.vstack((np.array((1)),layer_input))

#按照公式计算

delta[layer_index] = np.dot(layer_theta.T,next_delta)*sigmoid(layer_input)

#过滤掉偏置参数

delta[layer_index] = delta[layer_index][1:,:]

#计算梯度值

for layer_index in range(num_layers-1):

layer_delta = np.dot(delta[layer_index+1],layers_activations[layer_index].T) #微调矩阵

deltas[layer_index] = deltas[layer_index] + layer_delta #第一次25 * 785 第二次 10 * 26

for layer_index in range(num_layers-1):

deltas[layer_index] = deltas[layer_index] * (1/num_examples) #公式

return deltas

        实现一次梯度下降:

@staticmethod

def gradient_step(data,labels,optimized_theta,layers):

theta = MultilayerPerceptron.thetas_roll(optimized_theta,layers)

#反向传播BP

thetas_rolled_gradinets = MultilayerPerceptron.back_propagation(data,labels,theta,layers)

thetas_unrolled_gradinets = MultilayerPerceptron.thetas_unroll(thetas_rolled_gradinets)

return thetas_unrolled_gradinets

         实现梯度下降:

@staticmethod

def gradient_descent(data,labels,unrolled_theta,layers,max_ietrations,alpha):

#1. 计算损失值

#2. 计算梯度值

#3. 更新参数

optimized_theta = unrolled_theta #最好的theta值

cost_history = [] #损失值的记录

for i in range(max_ietrations):

if i % 10 == 0 :

print("当前迭代次数:",i)

cost = MultilayerPerceptron.cost_function(data,labels,MultilayerPerceptron.thetas_roll(optimized_theta,layers),layers)

cost_history.append(cost)

theta_gradient = MultilayerPerceptron.gradient_step(data,labels,optimized_theta,layers)

optimized_theta = optimized_theta - alpha * theta_gradient

return optimized_theta,cost_history

        8、预测函数

        输入测试数据,前向传播走一次,得到预测值

def predict(self,data):

data_processed = prepare_for_training(data,normalize_data = self.normalize_data)[0]

num_examples = data_processed.shape[0]

predictions = MultilayerPerceptron.feedforword_propagation(data_processed,self.thetas,self.layers)

return np.argmax(predictions,axis=1).reshape((num_examples,1))

四、完整代码

import numpy as np

from Neural_Network_Lab.utils.features import prepare_for_training

from Neural_Network_Lab.utils.hypothesis import sigmoid,sigmoid_gradient

class MultilayerPerceptron:

def __init__(self,data,labels,layers,normalize_data=False):

data_processed = prepare_for_training(data,normalize_data=normalize_data)[0]

self.data = data_processed

self.labels = labels

self.layers = layers # [ 784 ,25 ,10]

self.normalize_data = normalize_data

self.thetas = MultilayerPerceptron.thetas_init(layers)

def predict(self,data):

data_processed = prepare_for_training(data,normalize_data = self.normalize_data)[0]

num_examples = data_processed.shape[0]

predictions = MultilayerPerceptron.feedforword_propagation(data_processed,self.thetas,self.layers)

return np.argmax(predictions,axis=1).reshape((num_examples,1))

def train(self,max_ietrations = 1000,alpha = 0.1):

#方便矩阵更新 拉长 把矩阵拉成向量

unrolled_theta = MultilayerPerceptron.thetas_unroll(self.thetas)

(optimized_theta, cost_history) = MultilayerPerceptron.gradient_descent(self.data,self.labels,unrolled_theta,self.layers,max_ietrations,alpha)

self.thetas = MultilayerPerceptron.thetas_roll(optimized_theta,self.layers)

return self.thetas,cost_history

@staticmethod

def gradient_descent(data,labels,unrolled_theta,layers,max_ietrations,alpha):

#1. 计算损失值

#2. 计算梯度值

#3. 更新参数

optimized_theta = unrolled_theta #最好的theta值

cost_history = [] #损失值的记录

for i in range(max_ietrations):

if i % 10 == 0 :

print("当前迭代次数:",i)

cost = MultilayerPerceptron.cost_function(data,labels,MultilayerPerceptron.thetas_roll(optimized_theta,layers),layers)

cost_history.append(cost)

theta_gradient = MultilayerPerceptron.gradient_step(data,labels,optimized_theta,layers)

optimized_theta = optimized_theta - alpha * theta_gradient

return optimized_theta,cost_history

@staticmethod

def gradient_step(data,labels,optimized_theta,layers):

theta = MultilayerPerceptron.thetas_roll(optimized_theta,layers)

#反向传播BP

thetas_rolled_gradinets = MultilayerPerceptron.back_propagation(data,labels,theta,layers)

thetas_unrolled_gradinets = MultilayerPerceptron.thetas_unroll(thetas_rolled_gradinets)

return thetas_unrolled_gradinets

@staticmethod

def back_propagation(data,labels,thetas,layers):

num_layers = len(layers)

(num_examples,num_features) = data.shape

num_label_types = layers[-1]

deltas = {} # 算出每一层对结果的影响

#初始化

for layer_index in range(num_layers - 1):

in_count = layers[layer_index]

out_count = layers[layer_index + 1]

deltas[layer_index] = np.zeros((out_count,in_count+1)) #25 * 785 10 *26

for example_index in range(num_examples):

layers_inputs = {}

layers_activations = {}

layers_activation = data[example_index,:].reshape((num_features,1))

layers_activations[0] = layers_activation

#逐层计算

for layer_index in range(num_layers - 1):

layer_theta = thetas[layer_index] #得到当前的权重参数值 : 25 *785 10 *26

layer_input = np.dot(layer_theta,layers_activation) # 第一次 得到 25 * 1 第二次: 10 * 1

layers_activation = np.vstack((np.array([[1]]),sigmoid(layer_input))) #完成激活函数,加上一个偏置参数

layers_inputs[layer_index+1] = layer_input # 后一层计算结果

layers_activations[layer_index +1] = layers_activation # 后一层完成激活的结果

output_layer_activation = layers_activation[1:,:]

#计算输出层和结果的差异

delta = {}

#标签处理

bitwise_label = np.zeros((num_label_types,1))

bitwise_label[labels[example_index][0]] = 1

#计算输出结果和真实值之间的差异

delta[num_layers-1] = output_layer_activation - bitwise_label #输出层

#遍历 L,L-1,L-2...2

for layer_index in range(num_layers - 2,0,-1):

layer_theta = thetas[layer_index]

next_delta = delta[layer_index+1]

layer_input = layers_inputs[layer_index]

layer_input = np.vstack((np.array((1)),layer_input))

#按照公式计算

delta[layer_index] = np.dot(layer_theta.T,next_delta)*sigmoid(layer_input)

#过滤掉偏置参数

delta[layer_index] = delta[layer_index][1:,:]

#计算梯度值

for layer_index in range(num_layers-1):

layer_delta = np.dot(delta[layer_index+1],layers_activations[layer_index].T) #微调矩阵

deltas[layer_index] = deltas[layer_index] + layer_delta #第一次25 * 785 第二次 10 * 26

for layer_index in range(num_layers-1):

deltas[layer_index] = deltas[layer_index] * (1/num_examples)

return deltas

@staticmethod

def cost_function(data,labels,thetas,layers):

num_layers = len(layers)

num_examples = data.shape[0]

num_labels = layers[-1]

#前向传播走一次

predictions = MultilayerPerceptron.feedforword_propagation(data,thetas,layers)

#制作标签,每一个样本的标签都是one-dot

bitwise_labels = np.zeros((num_examples,num_labels))

for example_index in range(num_examples):

bitwise_labels[example_index][labels[example_index][0]] = 1

#咱们的预测值是概率值y= 7 [0,0,0,0,0,0,1,0,0,0] 在正确值的位置上概率越大越好 在错误值的位置上概率越小越好

bit_set_cost = np.sum(np.log(predictions[bitwise_labels == 1]))

bit_not_set_cost = np.sum(np.log(1 - predictions[bitwise_labels == 0]))

cost = (-1/num_examples) * (bit_set_cost+bit_not_set_cost)

return cost

@staticmethod

def feedforword_propagation(data,thetas,layers):

num_layers = len(layers)

num_examples = data.shape[0]

in_layer_activation = data #输入层

#逐层计算 隐藏层

for layer_index in range(num_layers - 1):

theta = thetas[layer_index]

out_layer_activation = sigmoid(np.dot(in_layer_activation,theta.T)) #输出层

# 正常计算之后是num_examples * 25 ,但是要考虑偏置项 变成num_examples * 26

out_layer_activation = np.hstack((np.ones((num_examples,1)),out_layer_activation))

in_layer_activation = out_layer_activation

#返回输出层结果,不要偏置项

return in_layer_activation[:,1:]

@staticmethod

def thetas_roll(unrolled_theta,layers):

num_layers = len(layers)

thetas = {}

unrolled_shift = 0

for layer_index in range(num_layers - 1):

in_count = layers[layer_index]

out_count = layers[layer_index + 1]

thetas_width = in_count + 1

thetas_height = out_count

thetas_volume = thetas_width * thetas_height

start_index = unrolled_shift

end_index =unrolled_shift + thetas_volume

layer_theta_unrolled = unrolled_theta[start_index:end_index]

thetas[layer_index] = layer_theta_unrolled.reshape((thetas_height,thetas_width))

unrolled_shift = unrolled_shift + thetas_volume

return thetas

@staticmethod

def thetas_unroll(thetas):

#拼接成一个向量

num_theta_layers = len(thetas)

unrolled_theta = np.array([])

for theta_layer_index in range(num_theta_layers):

unrolled_theta = np.hstack((unrolled_theta,thetas[theta_layer_index].flatten()))

return unrolled_theta

@staticmethod

def thetas_init(layers):

num_layers = len(layers)

thetas = {} #用字典形式 key:表示第几层 vlues:权重参数矩阵

for layer_index in range(num_layers-1):

'''

会执行两次: 得到两组参数矩阵 25 * 785 , 10 * 26

'''

in_count = layers[layer_index]

out_count = layers[layer_index+1]

#初始化 初始值小

#这里需要考虑偏置项,偏置的个数与输出的个数一样

thetas[layer_index]=np.random.rand(out_count,in_count+1) * 0.05 #加一列输入特征

return thetas

 五、手写数字识别

        数据集(读者可以找找下载,我就不放链接了>_<):   

 

         共一万个样本,第一列为标签值,一列表示像素点的值共28*28共784个像素点。

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import matplotlib.image as mping

import math

from Neural_Network_Lab.Multilayer_Perceptron import MultilayerPerceptron

data = pd.read_csv('../Neural_Network_Lab/data/mnist-demo.csv')

#展示数据

numbers_to_display = 25

num_cells = math.ceil(math.sqrt(numbers_to_display))

plt.figure(figsize=(10,10))

for plot_index in range(numbers_to_display):

digit = data[plot_index:plot_index+1].values

digit_label = digit[0][0]

digit_pixels = digit[0][1:]

image_size = int(math.sqrt(digit_pixels.shape[0]))

frame = digit_pixels.reshape((image_size,image_size))

plt.subplot(num_cells,num_cells,plot_index+1)

plt.imshow(frame,cmap = 'Greys')

plt.title(digit_label)

plt.subplots_adjust(wspace=0.5,hspace=0.5)

plt.show()

train_data = data.sample(frac= 0.8)

test_data = data.drop(train_data.index)

train_data = train_data.values

test_data = test_data.values

num_training_examples = 8000

X_train = train_data[:num_training_examples,1:]

y_train = train_data[:num_training_examples,[0]]

X_test = test_data[:,1:]

y_test = test_data[:,[0]]

layers = [784,25,10]

normalize_data = True

max_iteration = 500

alpha = 0.1

multilayerperceptron = MultilayerPerceptron(X_train,y_train,layers,normalize_data)

(thetas,cost_history) = multilayerperceptron.train(max_iteration,alpha)

plt.plot(range(len(cost_history)),cost_history)

plt.xlabel('Grident steps')

plt.ylabel('cost')

plt.show()

y_train_predictions = multilayerperceptron.predict(X_train)

y_test_predictions = multilayerperceptron.predict(X_test)

train_p = np.sum((y_train_predictions == y_train) / y_train.shape[0] * 100)

test_p = np.sum((y_test_predictions == y_test) / y_test.shape[0] * 100)

print("训练集准确率:",train_p)

print("测试集准确率:",test_p)

numbers_to_display = 64

num_cells = math.ceil(math.sqrt(numbers_to_display))

plt.figure(figsize=(15,15))

for plot_index in range(numbers_to_display):

digit_label = y_test[plot_index,0]

digit_pixels = X_test[plot_index,:]

predicted_label = y_test_predictions[plot_index][0]

image_size = int(math.sqrt(digit_pixels.shape[0]))

frame = digit_pixels.reshape((image_size,image_size))

plt.subplot(num_cells,num_cells,plot_index+1)

color_map = 'Greens' if predicted_label == digit_label else 'Reds'

plt.imshow(frame,cmap = color_map)

plt.title(predicted_label)

plt.tick_params(axis='both',which='both',bottom=False,left=False,labelbottom=False)

plt.subplots_adjust(wspace=0.5,hspace=0.5)

plt.show()

         训练集8000个,测试集2000个,迭代次数500次

        

        

         这里准确率不高,读者可以自行调整参数,改变迭代次数,网络层次都可以哦。

          

        

         

        

        

       

        

参考文章

评论可见,请评论后查看内容,谢谢!!!
 您阅读本篇文章共花了: