超螺旋滑模控制(Super Twisting Algorithm, STA)

超螺旋滑模控制又称超扭滑模控制,可以说是二阶系统中最好用的滑模控制方法。

系统模型

对于二阶系统可以建立具有标准柯西形式的微分方程组

{

x

˙

1

=

x

2

x

˙

2

=

f

+

g

u

\begin{cases} \dot x_1 = x_2 \\ \dot x_2 = f + g \cdot u \end{cases}

{x˙1​=x2​x˙2​=f+g⋅u​ 与传统滑模相比,超螺旋滑模,使用积分来获取实际控制量,不含高频切换量,所以系统中没有抖振。

令滑模面为s,只要满足以下的方程,即为稳定

{

s

˙

=

λ

s

1

2

s

i

g

n

(

s

)

+

ν

ν

˙

=

α

s

i

g

n

(

s

)

\begin{cases} \dot s = -\lambda |s| ^ {\frac {1} {2}} \cdot sign(s) + \nu \\ \dot \nu = - \alpha \cdot sign(s) \\ \end{cases}

{s˙=−λ∣s∣21​⋅sign(s)+νν˙=−α⋅sign(s)​

控制器设计

设状态

x

1

x_1

x1​ 的期望值为

x

d

x_d

xd​ ,则跟踪误差为

{

e

1

=

x

1

x

d

e

2

=

e

˙

1

=

x

˙

1

x

˙

d

=

x

2

x

˙

d

\begin{cases} e_1 = x_1 - x_d \\ e_2 = \dot e_1 = \dot x_1 - \dot x_d = x_2 - \dot x_d \end{cases}

{e1​=x1​−xd​e2​=e˙1​=x˙1​−x˙d​=x2​−x˙d​​ 设计滑模面为

s

=

c

e

1

+

e

2

s = ce_1 + e_2

s=ce1​+e2​ 则滑模面的导数为

s

˙

=

c

e

˙

1

+

e

˙

2

=

c

e

˙

2

+

f

+

g

u

x

¨

d

=

λ

s

1

2

s

i

g

n

(

s

)

+

ν

=

λ

s

1

2

s

i

g

n

(

s

)

α

s

i

g

n

(

s

)

\begin{align} \dot s & = c \dot e_1 + \dot e_2 \nonumber \\ & = c \dot e_2 + f + g \cdot u - \ddot x_d \nonumber\\ & = -\lambda |s| ^ {\frac {1} {2}} \cdot sign(s) + \nu \nonumber\\ & = -\lambda |s| ^ {\frac {1} {2}} \cdot sign(s) - \alpha \cdot sign(s) \nonumber\\ \end{align}

s˙​=ce˙1​+e˙2​=ce˙2​+f+g⋅u−x¨d​=−λ∣s∣21​⋅sign(s)+ν=−λ∣s∣21​⋅sign(s)−α⋅sign(s)​​ 可以得到控制量

u

=

g

1

(

f

+

x

¨

d

c

1

e

2

λ

s

1

2

s

i

g

n

(

s

)

α

s

i

g

n

(

s

)

)

u = g ^ {-1} (-f + \ddot x_d - c_1e_2 - \lambda |s| ^ {\frac {1} {2}}sign(s) - \alpha \cdot sign(s))

u=g−1(−f+x¨d​−c1​e2​−λ∣s∣21​sign(s)−α⋅sign(s)) 参数设定为

λ

˙

=

ω

1

γ

1

2

α

=

λ

ε

+

1

2

(

β

+

4

ε

2

)

\begin{align} \dot \lambda &= \omega _ 1 \sqrt{\frac {\gamma_1} {2}} \nonumber\\ \alpha &= \lambda \varepsilon + \frac{1}{2}(\beta+4\varepsilon ^ {2}) \nonumber \end{align}

λ˙α​=ω1​2γ1​​

​=λε+21​(β+4ε2)​ 式中,

α

,

β

,

ε

,

ω

1

,

γ

1

\alpha , \beta , \varepsilon , \omega_1 , \gamma_1

α,β,ε,ω1​,γ1​ 均大于0。

稳定性证明

可以看出,控制量中含有的不再是滑模面,而是多项式

s

1

2

|s| ^ {\frac {1} {2}}

∣s∣21​ 。除此之外,在

s

˙

\dot s

s˙ 中还出现了另一个参数

ν

\nu

ν ,不妨把这两者定义为新的状态变量,在此基础上设成李雅普诺夫函数。

{

z

1

=

s

1

2

z

2

=

ν

{

z

˙

1

=

1

2

s

1

2

s

˙

=

1

2

s

1

2

(

λ

s

1

2

s

i

g

n

(

s

)

α

s

i

g

n

(

s

)

)

z

˙

2

=

ν

˙

=

α

s

i

g

n

(

s

)

\begin{cases} z_1 = |s| ^ {\frac {1} {2}} \nonumber\\ z_2 = \nu \\ \end{cases} \Rightarrow \begin{cases} \dot z_1 = {\frac {1} {2}} |s| ^ {-\frac {1} {2}} \dot s = {\frac {1} {2}} |s| ^ {-\frac {1} {2}}(-\lambda |s| ^ {\frac {1} {2}} \cdot sign(s) - \alpha \cdot sign(s)) \\ \dot z_2 = \dot \nu = -\alpha \cdot sign(s) \\ \end{cases}

{z1​=∣s∣21​z2​=ν​⇒{z˙1​=21​∣s∣−21​s˙=21​∣s∣−21​(−λ∣s∣21​⋅sign(s)−α⋅sign(s))z˙2​=ν˙=−α⋅sign(s)​ 将第一项带入第二项

{

z

˙

1

=

1

2

z

1

(

λ

z

1

+

z

2

)

z

˙

2

=

ν

˙

=

α

s

i

g

n

(

s

)

=

α

s

i

g

n

(

s

)

s

1

2

s

1

2

=

α

z

1

z

1

{

z

˙

1

=

1

2

z

1

(

λ

z

1

+

z

2

)

z

˙

2

=

α

z

1

z

1

\begin{align} &\begin{cases} \dot z_1 = \frac {1} {2|z_1|}(-\lambda z_1 + z_2) \\ \dot z_2 = \dot \nu = -\alpha \cdot sign(s) = -\alpha \cdot sign(s) |s| ^ {\frac {1}{2}} |s| ^ {-\frac {1}{2}} = -\alpha {\frac {z_1}{|z_1|}} \nonumber \end{cases} \\ \nonumber & \Rightarrow \\ \nonumber &\begin{cases} \dot z_1 = \frac {1} {2|z_1|}(-\lambda z_1 + z_2) \\ \dot z_2 = -\alpha {\frac {z_1}{|z_1|}} \\ \end{cases} \\ \end{align} \nonumber

​{z˙1​=2∣z1​∣1​(−λz1​+z2​)z˙2​=ν˙=−α⋅sign(s)=−α⋅sign(s)∣s∣21​∣s∣−21​=−α∣z1​∣z1​​​⇒{z˙1​=2∣z1​∣1​(−λz1​+z2​)z˙2​=−α∣z1​∣z1​​​​​ 设置新的状态变量为

Z

=

[

z

1

z

2

]

Z = \begin{bmatrix} z_1 \\ z_2 \\ \end{bmatrix}

Z=[z1​z2​​] 设置李雅普诺夫函数为

V

0

=

Z

T

P

Z

=

(

β

+

4

ε

2

)

z

1

2

+

z

2

2

4

ε

z

1

z

2

V_0 = Z^TPZ = (\beta+4\varepsilon^2)z_1^2 + z_2^2 - 4\varepsilon z_1 z_2

V0​=ZTPZ=(β+4ε2)z12​+z22​−4εz1​z2​ 其中

P

P

P 为

P

=

[

β

+

4

ε

2

2

ε

2

ε

1

]

P=\begin{bmatrix} \beta+4\varepsilon^2 & -2\varepsilon \\ -2\varepsilon & 1 \\ \end{bmatrix}

P=[β+4ε2−2ε​−2ε1​]

李雅普诺夫函数的导数

对李雅普诺夫函数进行求导

V

˙

0

=

2

(

β

+

4

ε

2

)

z

1

z

˙

1

+

2

z

2

z

˙

2

4

ε

z

˙

1

z

2

4

ε

z

1

z

˙

2

=

2

(

β

+

4

ε

2

)

z

1

(

1

2

z

1

(

λ

z

1

+

z

2

)

)

+

2

z

2

(

α

z

1

z

1

)

4

ε

(

1

2

z

1

(

λ

z

1

+

z

2

)

)

z

2

4

ε

z

1

(

λ

z

1

+

z

2

)

=

1

z

1

Z

T

Q

Z

\begin{align} \dot V_0 &= 2(\beta+4\varepsilon^2)z_1 \dot z_1 + 2z_2 \dot z_2 - 4\varepsilon \dot z_1 z_2 - 4\varepsilon z_1 \dot z_2 \nonumber\\ &= 2(\beta+4\varepsilon^2)z_1 (\frac {1} {2|z_1|}(-\lambda z_1 + z_2)) + 2z_2(-\alpha {\frac {z_1}{|z_1|}}) - 4\varepsilon (\frac {1} {2|z_1|}(-\lambda z_1 + z_2)) z_2 - 4\varepsilon z_1 (-\lambda z_1 + z_2) \nonumber\\ &= - \frac {1} {|z_1|} Z^T Q Z \nonumber \end{align}

V˙0​​=2(β+4ε2)z1​z˙1​+2z2​z˙2​−4εz˙1​z2​−4εz1​z˙2​=2(β+4ε2)z1​(2∣z1​∣1​(−λz1​+z2​))+2z2​(−α∣z1​∣z1​​)−4ε(2∣z1​∣1​(−λz1​+z2​))z2​−4εz1​(−λz1​+z2​)=−∣z1​∣1​ZTQZ​ 其中

Q

Q

Q 为

Q

=

[

4

α

ε

+

λ

(

β

+

4

ε

2

)

1

2

(

β

+

4

ε

2

)

+

α

λ

ε

1

2

(

β

+

4

ε

2

)

+

α

λ

ε

2

ε

]

=

[

A

B

C

D

]

Q = \begin{bmatrix} -4\alpha \varepsilon + \lambda(\beta+4 \varepsilon^2) & -\frac{1}{2}(\beta+4\varepsilon^2) + \alpha-\lambda \varepsilon \\ -\frac{1}{2} (\beta+4\varepsilon^2) + \alpha-\lambda \varepsilon & 2\varepsilon \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix}

Q=[−4αε+λ(β+4ε2)−21​(β+4ε2)+α−λε​−21​(β+4ε2)+α−λε2ε​]=[AC​BD​] 这样我们得到李雅普诺夫函数

V

˙

0

=

1

z

1

Z

T

Q

Z

\dot V_0 = - \frac {1} {|z_1|} Z^T Q Z

V˙0​=−∣z1​∣1​ZTQZ 求

Q

Q

Q 的特征根

p

I

Q

=

p

A

B

C

p

D

=

p

2

(

A

+

D

)

p

+

A

D

B

C

=

0

|pI -Q| = \begin{vmatrix} p-A & B \\ C & p - D \end{vmatrix} = p^2-(A+D)p + AD - BC = 0

∣pI−Q∣=

​p−AC​Bp−D​

​=p2−(A+D)p+AD−BC=0 解方程组解得特征根为

{

p

m

a

x

(

Q

)

=

A

+

D

+

(

A

D

)

2

+

4

B

C

2

p

m

i

n

(

Q

)

=

A

+

D

(

A

D

)

2

+

4

B

C

2

\begin{cases} p_{max}(Q) = \frac {A+D + \sqrt{(A-D)^2+4BC}} {2}\\ p_{min}(Q) = \frac {A+D - \sqrt{(A-D)^2+4BC}} {2} \end{cases}

⎧​pmax​(Q)=2A+D+(A−D)2+4BC

​​pmin​(Q)=2A+D−(A−D)2+4BC

​​​ 所以

p

m

i

n

(

Q

)

Z

T

Z

=

A

+

D

+

(

A

D

)

2

+

4

B

C

2

(

z

1

2

+

z

2

2

)

p_{min}(Q) Z^T Z = \frac {A+D + \sqrt{(A-D)^2+4BC}} {2} (z_1^2 + z_2^2)

pmin​(Q)ZTZ=2A+D+(A−D)2+4BC

​​(z12​+z22​)

Z

T

Q

Z

=

A

z

1

2

+

(

B

+

C

)

Z

1

Z

2

+

D

z

2

2

Z^TQZ = A z_1^2 + (B+C)Z_1Z_2 + Dz_2^2

ZTQZ=Az12​+(B+C)Z1​Z2​+Dz22​

比较 $p_{min}(Q) Z^T Z

与Z^TQZ$的大小,为了简便运算,将根号项用

R

R

R 表示

D

v

a

l

=

2

(

Z

T

Q

Z

p

m

i

n

(

Q

)

Z

T

Z

)

=

(

A

D

+

R

)

z

1

2

+

(

D

A

+

R

)

z

2

2

+

2

(

B

+

C

)

z

1

z

2

=

(

A

D

+

R

)

[

z

1

2

+

(

D

A

+

R

)

(

A

D

+

R

)

z

2

2

+

2

(

B

+

C

)

(

A

D

+

R

)

z

1

z

2

]

=

(

A

D

+

R

)

[

z

1

2

+

(

D

A

+

R

)

(

D

+

R

A

)

(

A

D

+

R

)

(

D

+

R

A

)

z

2

2

+

2

(

B

+

C

)

(

R

+

D

A

)

(

A

D

+

R

)

(

R

+

D

A

)

z

1

z

2

]

=

(

A

D

+

R

)

[

z

1

2

+

(

D

+

R

A

)

2

4

B

C

z

2

2

+

2

(

B

+

C

)

(

R

+

D

A

)

4

B

C

z

1

z

2

]

=

(

A

D

+

R

)

[

z

1

2

+

(

D

+

R

A

)

2

4

B

C

z

2

2

+

(

D

+

R

A

)

2

4

B

C

z

1

z

2

(

D

+

R

A

)

2

4

B

C

z

1

z

2

+

2

(

B

+

C

)

(

R

+

D

A

)

4

B

C

z

1

z

2

]

=

(

A

D

+

R

)

[

(

z

1

+

D

+

R

A

2

B

C

z

2

)

2

+

(

2

B

+

2

C

4

B

C

)

(

R

+

D

A

)

4

B

C

z

1

z

2

]

\begin{align} D_{val} &=2(Z^TQZ - p_{min}(Q) Z^T Z ) \nonumber\\ &= (A-D+R)z_1^2+(D-A+R)z_2^2+2(B+C)z_1z_2 \nonumber\\ &= (A-D+R)\left[z_1^2 + \frac{(D-A+R)}{(A-D+R)}z_2^2 + \frac{2(B+C)}{(A-D+R)}z_1z_2\right] \nonumber\\ &= (A-D+R)\left[z_1^2 + \frac{(D-A+R)(D+R-A)}{(A-D+R)(D+R-A)}z_2^2 + \frac{2(B+C)(R+D-A)}{(A-D+R)(R+D-A)}z_1z_2\right] \nonumber \\ &= (A-D+R)\left[z_1^2 + \frac{(D+R-A)^2}{4BC}z_2^2 + \frac{2(B+C)(R+D-A)}{4BC}z_1z_2\right] \nonumber\\ &= (A-D+R)\left[z_1^2 + \frac{(D+R-A)^2}{4BC}z_2^2 + \sqrt{\frac{(D+R-A)^2}{4BC}}z_1z_2 \sqrt{\frac{(D+R-A)^2}{4BC}}z_1z_2 + \frac{2(B+C)(R+D-A)}{4BC}z_1z_2\right] \nonumber\\ &= (A-D+R)\left[(z_1 + \frac{D+R-A}{2 \sqrt{BC}}z_2)^2 + \frac{(2B+2C-4\sqrt{BC})(R+D-A)}{4BC}z_1z_2\right] \nonumber\\ \end{align}

Dval​​=2(ZTQZ−pmin​(Q)ZTZ)=(A−D+R)z12​+(D−A+R)z22​+2(B+C)z1​z2​=(A−D+R)[z12​+(A−D+R)(D−A+R)​z22​+(A−D+R)2(B+C)​z1​z2​]=(A−D+R)[z12​+(A−D+R)(D+R−A)(D−A+R)(D+R−A)​z22​+(A−D+R)(R+D−A)2(B+C)(R+D−A)​z1​z2​]=(A−D+R)[z12​+4BC(D+R−A)2​z22​+4BC2(B+C)(R+D−A)​z1​z2​]=(A−D+R)[z12​+4BC(D+R−A)2​z22​+4BC(D+R−A)2​

​z1​z2​4BC(D+R−A)2​

​z1​z2​+4BC2(B+C)(R+D−A)​z1​z2​]=(A−D+R)[(z1​+2BC

​D+R−A​z2​)2+4BC(2B+2C−4BC

​)(R+D−A)​z1​z2​]​​ 上式中

R

+

A

D

=

(

A

D

)

2

+

4

B

C

+

(

A

D

)

0

R + A - D = \sqrt{(A-D)^2+4BC} + (A - D) \ge 0

R+A−D=(A−D)2+4BC

​+(A−D)≥0

(

z

1

+

D

+

R

A

2

B

C

z

2

)

2

0

(z_1 + \frac{D+R-A}{2 \sqrt{BC}}z_2)^2 \ge 0

(z1​+2BC

​D+R−A​z2​)2≥0

{

2

B

+

2

C

4

B

C

0

R

+

D

A

=

(

A

D

)

2

+

4

B

C

+

(

D

A

)

0

(

2

B

+

2

C

4

B

C

)

(

R

+

D

A

)

4

B

C

0

\begin{cases} 2B+2C-4\sqrt{BC} \ge 0 \\ R+D-A = \sqrt{(A-D)^2+4BC} + (D - A) \ge 0 \\ \end{cases} \Rightarrow \frac{(2B+2C-4\sqrt{BC})(R+D-A)}{4BC} \ge 0

{2B+2C−4BC

​≥0R+D−A=(A−D)2+4BC

​+(D−A)≥0​⇒4BC(2B+2C−4BC

​)(R+D−A)​≥0

所以我们得到

Z

T

Q

Z

p

m

i

n

(

Q

)

Z

T

Z

Z^TQZ \ge p_{min}(Q) Z^T Z

ZTQZ≥pmin​(Q)ZTZ 同理可证

Z

T

Q

Z

p

m

a

x

(

Q

)

Z

T

Z

Z^TQZ \le p_{max}(Q) Z^T Z

ZTQZ≤pmax​(Q)ZTZ

李雅普诺夫函数导数的变换

上式是根据

V

˙

0

=

1

z

1

Z

T

Q

Z

\dot V_0 = -\frac {1} {|z_1|} Z^TQZ

V˙0​=−∣z1​∣1​ZTQZ 做出的,对于

V

0

=

Z

T

P

Z

V_0 = Z ^ T P Z

V0​=ZTPZ 同样根据上式可得

向量的0范数,向量中非零元素的个数 向量的1范数,向量中各元素绝对值的模 向量的2范数,通常意义上的模值,欧几里得范数 向量的无穷范数,向量的最大值

矩阵的1范数,列和范数,所有矩阵列向量绝对值之和的最大值 矩阵的2范数,谱范数,即

A

T

A

A^TA

ATA矩阵的最大特征值的开平方 矩阵的无穷范数,行和范数,所有矩阵行向量绝对值之和的最大值 矩阵的F范数,Forbenius范数,所有矩阵元素绝对值的平方和再开放

Z

T

P

Z

p

m

i

n

(

P

)

Z

T

Z

(

Z

T

P

Z

)

1

/

2

p

m

i

n

1

/

2

(

P

)

(

Z

T

Z

)

1

/

2

=

p

m

i

n

1

/

2

(

P

)

Z

Z

(

Z

T

P

Z

)

1

/

2

p

m

i

n

1

/

2

(

P

)

=

V

0

1

/

2

p

m

i

n

1

/

2

(

P

)

\begin{gather} Z^TPZ \ge p_{min}(P)Z^TZ \nonumber\\ \Rightarrow (Z^TPZ)^{1/2} \ge p_{min}^{1/2}(P)(Z^TZ)^{1/2} = p_{min}^{1/2}(P) \Vert Z \Vert \nonumber\\ \Rightarrow \Vert Z\Vert \le \frac{(Z^TPZ)^{1/2}}{p_{min}^{1/2}(P)} = \frac {V_0^{1/2}} {p_{min}^{1/2}(P)} \nonumber \end{gather}

ZTPZ≥pmin​(P)ZTZ⇒(ZTPZ)1/2≥pmin1/2​(P)(ZTZ)1/2=pmin1/2​(P)∥Z∥⇒∥Z∥≤pmin1/2​(P)(ZTPZ)1/2​=pmin1/2​(P)V01/2​​​

Z

Z

Z的欧几里得范数为

Z

=

z

1

2

+

z

2

2

=

(

s

1

2

s

i

g

n

(

s

)

)

2

+

ν

2

=

s

+

ν

s

=

z

1

\Vert Z \Vert = \sqrt {z_1^2 + z_2^2} = \sqrt{(|s| ^ {\frac {1} {2}}sign(s) )^2 + \nu ^ 2} = \sqrt{|s| + \nu} \ge \sqrt{|s|} = |z_1|

∥Z∥=z12​+z22​

​=(∣s∣21​sign(s))2+ν2

​=∣s∣+ν

​≥∣s∣

​=∣z1​∣ 所以

1

z

1

1

Z

-\frac {1}{\vert z_1 \vert} \le -\frac {1}{\Vert Z \Vert}

−∣z1​∣1​≤−∥Z∥1​ 我们再次回到

V

˙

0

\dot V_0

V˙0​

V

˙

0

=

1

z

1

Z

T

Q

Z

1

z

1

p

m

i

n

(

Q

)

Z

T

Z

=

1

z

1

p

m

i

n

(

Q

)

Z

2

1

Z

p

m

i

n

(

Q

)

Z

2

=

p

m

i

n

(

Q

)

Z

p

m

i

n

(

Q

)

V

0

1

2

p

m

i

n

1

2

(

P

)

=

r

V

0

1

2

\begin{align} \dot V_0 &= - \frac{1} {|z_1|} Z^TQZ \le - \frac{1} {|z_1|} p_{min}(Q)Z^TZ \nonumber \\ &= - \frac{1} {|z_1|} p_{min}(Q) \Vert Z \Vert ^ 2 \le -\frac {1}{\Vert Z \Vert} p_{min}(Q) \Vert Z \Vert ^ 2 \nonumber\\ &= -p_{min}(Q) \Vert Z \Vert \le -p_{min}(Q) \frac {V_0^{\frac{1}{2}}} {p_{min}^{\frac{1}{2}}(P)} \nonumber\\ &= -r V_0^{\frac{1}{2}} \nonumber \end{align}

V˙0​​=−∣z1​∣1​ZTQZ≤−∣z1​∣1​pmin​(Q)ZTZ=−∣z1​∣1​pmin​(Q)∥Z∥2≤−∥Z∥1​pmin​(Q)∥Z∥2=−pmin​(Q)∥Z∥≤−pmin​(Q)pmin21​​(P)V021​​​=−rV021​​​ 其中

r

=

p

m

i

n

(

Q

)

p

m

i

n

1

/

2

(

P

)

r = \frac {p_{min}(Q)} {p_{min}^{1/2}(P)}

r=pmin1/2​(P)pmin​(Q)​

若系统满足

V

˙

r

V

1

2

\dot V \le -rV^{\frac {1} {2}}

V˙≤−rV21​ 其中

r

>

0

r>0

r>0 ,则系统可以在有限时间内稳定

矩阵Q正定性的保证

上面的证明保证了系统具有李雅普诺夫稳定性,但是只有在

r

>

0

r > 0

r>0的情况下才能保证系统稳定,此时需要

p

m

i

n

(

Q

)

{p_{min}(Q)}

pmin​(Q)

p

m

i

n

1

/

2

(

P

)

{p_{min}^{1/2}(P)}

pmin1/2​(P) 保持同号,由于矩阵

P

P

P为正定矩阵,所以

p

m

i

n

1

/

2

(

P

)

{p_{min}^{1/2}(P)}

pmin1/2​(P)必大于0,那么需要保证

p

m

i

n

(

Q

)

{p_{min}(Q)}

pmin​(Q)也大于0。

正定矩阵的特征值都是正数

Q

=

[

4

α

ε

+

λ

(

β

+

4

ε

2

)

1

2

(

β

+

4

ε

2

)

+

α

λ

ε

1

2

(

β

+

4

ε

2

)

+

α

λ

ε

2

ε

]

Q = \begin{bmatrix} -4\alpha \varepsilon + \lambda(\beta+4 \varepsilon^2) & -\frac{1}{2}(\beta+4\varepsilon^2) + \alpha-\lambda \varepsilon \\ -\frac{1}{2} (\beta+4\varepsilon^2) + \alpha-\lambda \varepsilon & 2\varepsilon \end{bmatrix}

Q=[−4αε+λ(β+4ε2)−21​(β+4ε2)+α−λε​−21​(β+4ε2)+α−λε2ε​]

不妨直接取

α

=

λ

ε

+

1

2

(

β

+

4

ε

2

)

\alpha = \lambda \varepsilon + \frac{1}{2}(\beta+4\varepsilon^2)

α=λε+21​(β+4ε2) 这样的话可以简化一下

Q

=

[

(

λ

2

ε

)

(

β

+

4

ε

2

)

4

λ

ε

2

0

0

2

ε

]

Q = \begin{bmatrix} (\lambda-2\varepsilon)(\beta+4 \varepsilon^2)-4\lambda \varepsilon^2 & 0\\ 0 & 2\varepsilon \end{bmatrix}

Q=[(λ−2ε)(β+4ε2)−4λε20​02ε​] 所以

Q

Q

Q 的特征根为

{

p

1

=

(

λ

2

ε

)

(

β

+

4

ε

2

)

4

λ

ε

2

p

2

=

2

ε

\begin{cases} p_1 = (\lambda-2\varepsilon)(\beta+4 \varepsilon^2)-4\lambda \varepsilon^2 \\ p_2 = 2\varepsilon \end{cases}

{p1​=(λ−2ε)(β+4ε2)−4λε2p2​=2ε​ 由于

ε

>

0

\varepsilon > 0

ε>0 所以

p

2

>

0

p_2 > 0

p2​>0非常显然,现在只需要保证

p

1

>

0

p_1>0

p1​>0,则可以有

λ

>

2

ε

(

β

+

4

ε

2

)

β

\lambda > \frac{2\varepsilon(\beta+4\varepsilon^2)} {\beta}

λ>β2ε(β+4ε2)​

重写李雅普诺夫函数

上一节中给出了保证

Q

Q

Q 正定性的条件,但是

α

\alpha

α 和

λ

\lambda

λ 这两个参数值是人为给出的,因此需要把这两个参数加入到李雅普诺夫函数中来

V

=

V

0

+

1

2

γ

1

(

λ

λ

)

2

+

1

2

γ

2

(

α

α

)

2

V = V_0 + \frac {1} {2\gamma_1} (\lambda-\lambda^{*})^2 + \frac{1}{2\gamma_2} (\alpha-\alpha^{*})^2

V=V0​+2γ1​1​(λ−λ∗)2+2γ2​1​(α−α∗)2 其中

λ

 

α

\lambda^{*} \ \alpha^{*}

λ∗ α∗ 为未知常数,对其求导

V

˙

=

V

˙

0

+

1

γ

1

(

λ

λ

)

λ

˙

+

1

γ

2

(

α

α

)

α

˙

r

V

0

1

2

+

1

γ

1

(

λ

λ

)

λ

˙

+

1

γ

2

(

α

α

)

α

˙

=

r

V

0

1

2

+

1

γ

1

(

λ

λ

)

λ

˙

+

1

γ

2

(

α

α

)

α

˙

ω

1

2

γ

1

λ

λ

+

ω

1

2

γ

1

λ

λ

ω

2

2

γ

2

α

α

+

ω

2

2

γ

2

α

α

\begin{align} \dot V &= \dot V_0 + \frac {1} {\gamma_1} (\lambda-\lambda^{*})\dot \lambda + \frac{1}{\gamma_2} (\alpha-\alpha^{*})\dot \alpha \le -r V_0^{\frac{1}{2}} + \frac {1} {\gamma_1} (\lambda-\lambda^{*})\dot \lambda + \frac{1}{\gamma_2} (\alpha-\alpha^{*})\dot \alpha \nonumber\\ &= -r V_0^{\frac{1}{2}} + \frac {1} {\gamma_1} (\lambda-\lambda^{*})\dot \lambda + \frac{1}{\gamma_2} (\alpha-\alpha^{*})\dot \alpha -\frac {\omega_1} {\sqrt{2 \gamma_1}} |\lambda - \lambda^{*}|+\frac {\omega_1} {\sqrt{2 \gamma_1}} |\lambda - \lambda^{*}| -\frac {\omega_2} {\sqrt{2 \gamma_2}} |\alpha - \alpha^{*}|+\frac {\omega_2} {\sqrt{2 \gamma_2}} |\alpha - \alpha^{*}| \nonumber \end{align}

V˙​=V˙0​+γ1​1​(λ−λ∗)λ˙+γ2​1​(α−α∗)α˙≤−rV021​​+γ1​1​(λ−λ∗)λ˙+γ2​1​(α−α∗)α˙=−rV021​​+γ1​1​(λ−λ∗)λ˙+γ2​1​(α−α∗)α˙−2γ1​

​ω1​​∣λ−λ∗∣+2γ1​

​ω1​​∣λ−λ∗∣−2γ2​

​ω2​​∣α−α∗∣+2γ2​

​ω2​​∣α−α∗∣​ 根据

(

x

2

+

y

2

+

z

2

)

x

+

y

+

z

(x^2 + y^2 + z^2) \le |x| + |y| + |z|

(x2+y2+z2)≤∣x∣+∣y∣+∣z∣ 有

r

V

0

1

2

ω

1

2

γ

1

λ

λ

ω

2

2

γ

2

α

α

[

r

2

V

0

1

2

+

ω

1

2

2

γ

1

λ

λ

2

+

ω

2

2

2

γ

2

α

α

2

]

1

2

-r V_0^{\frac{1}{2}} - \frac {\omega_1} {\sqrt{2 \gamma_1}} |\lambda - \lambda^{*}|-\frac {\omega_2} {\sqrt{2 \gamma_2}} |\alpha - \alpha^{*}| \le - \left[r^2V_0^{\frac{1}{2}}+ \frac {\omega_1^2} {\sqrt{2 \gamma_1}} |\lambda - \lambda^{*}|^2 + \frac {\omega_2^2} {\sqrt{2 \gamma_2}} |\alpha - \alpha^{*}|^2\right]^{\frac{1}{2}}

−rV021​​−2γ1​

​ω1​​∣λ−λ∗∣−2γ2​

​ω2​​∣α−α∗∣≤−[r2V021​​+2γ1​

​ω12​​∣λ−λ∗∣2+2γ2​

​ω22​​∣α−α∗∣2]21​ 设

r

,

ω

1

,

ω

2

r,\omega_1,\omega_2

r,ω1​,ω2​ 中最小的数为

n

n

n,则上式为

[

r

2

V

0

1

2

+

ω

1

2

2

γ

1

λ

λ

2

+

ω

2

2

2

γ

2

α

α

2

]

1

2

n

[

V

0

1

2

+

1

2

γ

1

λ

λ

2

+

1

2

γ

2

α

α

2

]

=

n

V

1

2

\left[r^2V_0^{\frac{1}{2}}+ \frac {\omega_1^2} {\sqrt{2 \gamma_1}} |\lambda - \lambda^{*}|^2 + \frac {\omega_2^2} {\sqrt{2 \gamma_2}} |\alpha - \alpha^{*}|^2\right]^{\frac{1}{2}} \le-n \left[V_0^{\frac{1}{2}}+ \frac {1} {\sqrt{2 \gamma_1}} |\lambda - \lambda^{*}|^2 + \frac {1} {\sqrt{2 \gamma_2}} |\alpha - \alpha^{*}|^2 \right] = -nV^{\frac{1}{2}}

[r2V021​​+2γ1​

​ω12​​∣λ−λ∗∣2+2γ2​

​ω22​​∣α−α∗∣2]21​≤−n[V021​​+2γ1​

​1​∣λ−λ∗∣2+2γ2​

​1​∣α−α∗∣2]=−nV21​ 带入

V

˙

\dot V

V˙ 有

V

˙

r

V

0

1

2

+

1

γ

1

(

λ

λ

)

λ

˙

+

1

γ

2

(

α

α

)

α

˙

ω

1

2

γ

1

λ

λ

+

ω

1

2

γ

1

λ

λ

ω

2

2

γ

2

α

α

+

ω

2

2

γ

2

α

α

n

V

1

2

+

1

γ

1

(

λ

λ

)

λ

˙

+

1

γ

2

(

α

α

)

α

˙

+

ω

1

2

γ

1

λ

λ

+

ω

2

2

γ

2

α

α

\begin {align} \dot V &\le -r V_0^{\frac{1}{2}} + \frac {1} {\gamma_1} (\lambda-\lambda^{*})\dot \lambda + \frac{1}{\gamma_2} (\alpha-\alpha^{*})\dot \alpha -\frac {\omega_1} {\sqrt{2 \gamma_1}} |\lambda - \lambda^{*}|+\frac {\omega_1} {\sqrt{2 \gamma_1}} |\lambda - \lambda^{*}| -\frac {\omega_2} {\sqrt{2 \gamma_2}} |\alpha - \alpha^{*}|+\frac {\omega_2} {\sqrt{2 \gamma_2}} |\alpha - \alpha^{*}| \nonumber\\ &\le -nV^{\frac{1}{2}} + \frac {1} {\gamma_1} (\lambda-\lambda^{*})\dot \lambda + \frac{1}{\gamma_2} (\alpha-\alpha^{*})\dot \alpha +\frac {\omega_1} {\sqrt{2 \gamma_1}} |\lambda - \lambda^{*}| +\frac {\omega_2} {\sqrt{2 \gamma_2}} |\alpha - \alpha^{*}| \nonumber \end {align}

V˙​≤−rV021​​+γ1​1​(λ−λ∗)λ˙+γ2​1​(α−α∗)α˙−2γ1​

​ω1​​∣λ−λ∗∣+2γ1​

​ω1​​∣λ−λ∗∣−2γ2​

​ω2​​∣α−α∗∣+2γ2​

​ω2​​∣α−α∗∣≤−nV21​+γ1​1​(λ−λ∗)λ˙+γ2​1​(α−α∗)α˙+2γ1​

​ω1​​∣λ−λ∗∣+2γ2​

​ω2​​∣α−α∗∣​ 由于

λ

 

α

\lambda^{*} \ \alpha^{*}

λ∗ α∗ 为未知常数,那我们假设

λ

>

λ

α

>

α

\lambda^{*}>\lambda , \alpha^{*} > \alpha

λ∗>λ,α∗>α ,总能找到两个常数满足这两个条件

V

˙

n

V

1

2

+

1

γ

1

(

λ

λ

)

λ

˙

+

1

γ

2

(

α

α

)

α

˙

+

ω

1

2

γ

1

λ

λ

+

ω

2

2

γ

2

α

α

=

n

V

1

2

1

γ

1

λ

λ

λ

˙

1

γ

2

α

α

α

˙

+

ω

1

2

γ

1

λ

λ

+

ω

2

2

γ

2

α

α

=

n

V

1

2

+

λ

λ

(

ω

1

2

γ

1

λ

˙

γ

1

)

+

α

α

(

ω

2

2

γ

2

λ

˙

γ

2

)

\begin{align} \dot V &\le -nV^{\frac{1}{2}} + \frac {1} {\gamma_1} (\lambda-\lambda^{*})\dot \lambda + \frac{1}{\gamma_2} (\alpha-\alpha^{*})\dot \alpha +\frac {\omega_1} {\sqrt{2 \gamma_1}} |\lambda - \lambda^{*}| +\frac {\omega_2} {\sqrt{2 \gamma_2}} |\alpha - \alpha^{*}| \nonumber\\ &= -nV^{\frac{1}{2}} - \frac {1} {\gamma_1} |\lambda-\lambda^{*}|\dot \lambda - \frac{1}{\gamma_2} |\alpha-\alpha^{*}|\dot \alpha +\frac {\omega_1} {\sqrt{2 \gamma_1}} |\lambda - \lambda^{*}| +\frac {\omega_2} {\sqrt{2 \gamma_2}} |\alpha - \alpha^{*}| \nonumber\\ &= -nV^{\frac{1}{2}} + |\lambda-\lambda^{*}|(\frac {\omega_1} {\sqrt{2 \gamma_1}} - \frac{\dot \lambda} {\gamma_1}) + |\alpha-\alpha^{*}|(\frac {\omega_2} {\sqrt{2 \gamma_2}} - \frac{\dot \lambda} {\gamma_2}) \nonumber \end{align}

V˙​≤−nV21​+γ1​1​(λ−λ∗)λ˙+γ2​1​(α−α∗)α˙+2γ1​

​ω1​​∣λ−λ∗∣+2γ2​

​ω2​​∣α−α∗∣=−nV21​−γ1​1​∣λ−λ∗∣λ˙−γ2​1​∣α−α∗∣α˙+2γ1​

​ω1​​∣λ−λ∗∣+2γ2​

​ω2​​∣α−α∗∣=−nV21​+∣λ−λ∗∣(2γ1​

​ω1​​−γ1​λ˙​)+∣α−α∗∣(2γ2​

​ω2​​−γ2​λ˙​)​ 此时若令

λ

˙

=

ω

1

γ

1

2

\dot \lambda = \omega_1 \sqrt{\frac{\gamma_1}{2}}

λ˙=ω1​2γ1​​

​ 则

V

˙

n

V

1

2

+

λ

λ

(

ω

2

2

γ

2

α

˙

γ

2

)

=

n

V

1

2

+

η

\dot V \le -nV^{\frac{1}{2}} + |\lambda-\lambda^{*}|(\frac {\omega_2} {\sqrt{2 \gamma_2}} - \frac{\dot \alpha} {\gamma_2}) = -nV^{\frac{1}{2}} + \eta

V˙≤−nV21​+∣λ−λ∗∣(2γ2​

​ω2​​−γ2​α˙​)=−nV21​+η 其中

η

=

λ

λ

(

ω

2

2

γ

2

α

˙

γ

2

)

\eta = |\lambda-\lambda^{*}|(\frac {\omega_2} {\sqrt{2 \gamma_2}} - \frac{\dot \alpha} {\gamma_2})

η=∣λ−λ∗∣(2γ2​

​ω2​​−γ2​α˙​) 所以此系统具有李雅普诺夫稳定性,尽管有

η

\eta

η 存在,系统仍然可以在一定程度上保持稳定,原因在于我们证明了

V

˙

n

V

1

2

0

\dot V \le -nV^{\frac{1}{2}} \le 0

V˙≤−nV21​≤0 而不是传统的

V

˙

0

\dot V \le 0

V˙≤0

文章来源

评论可见,请评论后查看内容,谢谢!!!
 您阅读本篇文章共花了: