LIO-SAM跑KITTI数据集和自己数据集代码修改

一、编译并运行LIO-SAM二、代码修改1、cloud_info.msg2、imageProjection.cpp

三、KITTI数据集准备四、自己数据集准备五、修改配置文件params.yaml六、GPS信息的添加七、效果图八、轨迹保存九、点云地图保存(PCD)1、注意到save_map.srv文件2、进入到mapOptmization.cpp3、最后在配置文件params.yaml修改参数4、PCD效果展示

全文参考文献

一、编译并运行LIO-SAM

参考我的另一篇文章: Ubuntu20.04下的编译与运行LIO-SAM【问题解决】

二、代码修改

因为liosam 要求输入的点云每个点都有ring 信息和相对时间time信息,目前的雷达驱动基本具备这些信息,但是早期的KITTI数据集不具备,所以代码要自己计算一下 ring和time。方法可以参考lego-loam中这部分内容,具体修改如下。

1、cloud_info.msg

添加

# 用于改写ring和time相关

float32 startOrientation

float32 endOrientation

float32 orientationDiff

2、imageProjection.cpp

ring部分:

1、把ring通道强制关闭

2、添加计算ring代码

if (false){

rowIdn = laserCloudIn->points[i].ring;

} else {

verticalAngle = atan2(thisPoint.z, sqrt(thisPoint.x * thisPoint.x + thisPoint.y * thisPoint.y)) * 180 / M_PI;

// 拿16、32、64线激光雷达为例

if(N_SCAN == 16) {

rowIdn = int((verticalAngle + 15) / 2 + 0.5);

if (rowIdn < 0 || rowIdn >= N_SCAN)

{

continue;

} else if(rowIdn % downsampleRate != 0) {

continue;

}

} else if (N_SCAN == 32) {

rowIdn = int((verticalAngle + 92.0 / 3.0) * 3.0 / 4.0);

if (rowIdn < 0 || rowIdn >= N_SCAN)

{

continue;

} else if(rowIdn % downsampleRate != 0) {

continue;

}

} else if (N_SCAN == 64) {

if (verticalAngle >= -8.83) {

rowIdn = int((2 - verticalAngle) * 3.0 + 0.5);

} else {

rowIdn = N_SCAN / 2 + int((-8.83 - verticalAngle) * 2.0 + 0.5);

}

// use [0 50] > 50 remove outlies

if (verticalAngle > 2 || verticalAngle < -24.33 || rowIdn > 50 || rowIdn < 0)

{

continue;

} else if(rowIdn % downsampleRate != 0) {

continue;

}

} else {

printf("wrong scan number\n");

ROS_BREAK();

}

}

time部分:

1、把time通道强制关闭

2、计算time并赋值

bool halfPassed = false;

int cloudNum = laserCloudIn->points.size();

// start and end orientation of this cloud

cloudInfo.startOrientation = -atan2(laserCloudIn->points[0].y, laserCloudIn->points[0].x);

cloudInfo.endOrientation = -atan2(laserCloudIn->points[laserCloudIn->points.size() - 1].y, laserCloudIn->points[laserCloudIn->points.size() - 1].x) + 2 * M_PI;

if (cloudInfo.endOrientation - cloudInfo.startOrientation > 3 * M_PI) {

cloudInfo.endOrientation -= 2 * M_PI;

} else if (cloudInfo.endOrientation - cloudInfo.startOrientation < M_PI) {

cloudInfo.endOrientation += 2 * M_PI;

}

cloudInfo.orientationDiff = cloudInfo.endOrientation - cloudInfo.startOrientation;

PointType point;

for (int i = 0; i < cloudNum; ++i)

{

point.x = laserCloudIn->points[i].x;

point.y = laserCloudIn->points[i].y;

point.z = laserCloudIn->points[i].z;

float ori = -atan2(point.y, point.x);

if (!halfPassed) {

if (ori < cloudInfo.startOrientation - M_PI / 2) {

ori += 2 * M_PI;

} else if (ori > cloudInfo.startOrientation + M_PI * 3 / 2) {

ori -= 2 * M_PI;

}

if (ori - cloudInfo.startOrientation > M_PI) {

halfPassed = true;

}

} else {

ori += 2 * M_PI;

if (ori < cloudInfo.endOrientation - M_PI * 3 / 2) {

ori += 2 * M_PI;

} else if (ori > cloudInfo.endOrientation + M_PI / 2) {

ori -= 2 * M_PI;

}

}

float relTime = (ori - cloudInfo.startOrientation) / cloudInfo.orientationDiff;

// 激光雷达10Hz,周期0.1

laserCloudIn->points[i].time = 0.1 * relTime;

}

需要修改好的,可以查看我的。

三、KITTI数据集准备

关于KITTI数据集,已有公开的kitti2bag工具,使用方法:参见我的另一个博客在Ubuntu20.04系统上将KITTI原始数据集转化为.bag形式。但是输出的bag文件liosam是不能正常跑的,位姿Z型突变,仔细了解一下发现这个bag的imu频率跟雷达一样,也就是很低频,无法满足代码需求。liosam作者提供了一个2011_09_30_drive_0028.bag在google drive,但可能无法快速下载。

如果想自己制作bag,作者自己改了kitti2bag就在源码的文件夹下,你需要准备如下文件(文件位置需对应):

首先,在终端输入以下指令:

pip3 install tqdm

效果:

然后,在"2011_10_03"文件夹的上一级目录(即:此处的2011_10_03_calib文件下),打开终端,输入:

python3 kitti2bag.py -t 2011_10_03 -r 0027 raw_synced

注意自己的文件的文件名

效果如下:

我第一次文件位置不对,导致无法生成bag文件

四、自己数据集准备

具体采集步骤在后续更新…

五、修改配置文件params.yaml

1、话题名修改

# Topics

pointCloudTopic: "points_raw" # Point cloud data

imuTopic: "imu_raw" # IMU data

2、根据KITTI采集数据的实际传感器修改对应参数

# KITTI

sensor: velodyne # lidar sensor type, either 'velodyne' or 'ouster'

N_SCAN: 64 # number of lidar channel (i.e., 16, 32, 64, 128)

Horizon_SCAN: 2083 # lidar horizontal resolution (Velodyne:1800, Ouster:512,1024,2048)

downsampleRate: 1 # default: 1. Downsample your data if too many points. i.e., 16 = 64 / 4, 16 = 16 / 1

lidarMinRange: 1.0 # default: 1.0, minimum lidar range to be used

lidarMaxRange: 1000.0 # default: 1000.0, maximum lidar range to be used

对照我的另一个博客:LeGO-LOAM跑KITTI数据集评估方法【代码改】

3、外参的修改

# kitti外参

extrinsicTrans: [-8.086759e-01, 3.195559e-01, -7.997231e-01]

extrinsicRot: [9.999976e-01, 7.553071e-04, -2.035826e-03,

-7.854027e-04, 9.998898e-01, -1.482298e-02,

2.024406e-03, 1.482454e-02, 9.998881e-01]

extrinsicRPY: [9.999976e-01, 7.553071e-04, -2.035826e-03,

-7.854027e-04, 9.998898e-01, -1.482298e-02,

2.024406e-03, 1.482454e-02, 9.998881e-01]

注意点: 1、配置文件(params.yaml)内的参数通过参数服务器传送进源程序,会覆盖掉头文件内(utility.h)的对应参数。 2、其中extrinsicRot表示imu -> lidar的坐标变换,用于旋转imu坐标系下的角速度和线加速度到lidar坐标系下,extrinsicRPY则用于旋转imu坐标系下的欧拉角(姿态信息)到lidar坐标下,由于lio-sam作者使用的imu的欧拉角旋转指向与lidar坐标系不一致,因此使用了两个不同的旋转矩阵,但是大部分的设备两个旋转应该是设置为相同的。

六、GPS信息的添加

待更新…

七、效果图

KITTI:

00的可能会飞,05以后的应该没问题

八、轨迹保存

找到输出位姿信息,通过以下代码,输出位姿信息(KITTI格式):

// 位姿输出到txt文档

std::ofstream pose1("/home/cupido/output-data/lio-sam/pose.txt", std::ios::app);

pose1.setf(std::ios::scientific, std::ios::floatfield);

// pose1.precision(15);

//save final trajectory in the left camera coordinate system.

Eigen::Matrix3d rotation_matrix;

rotation_matrix = Eigen::AngleAxisd(pose_in.yaw, Eigen::Vector3d::UnitZ()) *

Eigen::AngleAxisd(pose_in.pitch, Eigen::Vector3d::UnitY()) *

Eigen::AngleAxisd(pose_in.roll, Eigen::Vector3d::UnitX());

Eigen::Matrix mylio_pose;

mylio_pose.topLeftCorner(3,3) = rotation_matrix;

mylio_pose(0,3) = pose_in.x;

mylio_pose(1,3) = pose_in.y;

mylio_pose(2,3) = pose_in.z;

Eigen::Matrix cali_paremeter;

/*cali_paremeter << 4.276802385584e-04, -9.999672484946e-01, -8.084491683471e-03, -1.198459927713e-02, //00-02

-7.210626507497e-03, 8.081198471645e-03, -9.999413164504e-01, -5.403984729748e-02,

9.999738645903e-01, 4.859485810390e-04, -7.206933692422e-03, -2.921968648686e-01,

0, 0, 0, 1;*/

/*cali_paremeter << -1.857739385241e-03,-9.999659513510e-01, -8.039975204516e-03, -4.784029760483e-03,

-6.481465826011e-03, 8.051860151134e-03, -9.999466081774e-01, -7.337429464231e-02,

9.999773098287e-01, -1.805528627661e-03, -6.496203536139e-03, -3.339968064433e-01, //04-10

0 0, 0, 1;*/

cali_paremeter << 2.347736981471e-04, -9.999441545438e-01, -1.056347781105e-02, -2.796816941295e-03,

1.044940741659e-02, 1.056535364138e-02, -9.998895741176e-01, -7.510879138296e-02,

9.999453885620e-01, 1.243653783865e-04, 1.045130299567e-02, -2.721327964059e-01,

0, 0, 0, 1;

Eigen::Matrix myloam_pose_f;

myloam_pose_f = cali_paremeter * mylio_pose * cali_paremeter.inverse();

pose1 << myloam_pose_f(0,0) << " " << myloam_pose_f(0,1) << " " << myloam_pose_f(0,2) << " " << myloam_pose_f(0,3) << " "

<< myloam_pose_f(1,0) << " " << myloam_pose_f(1,1) << " " << myloam_pose_f(1,2) << " " << myloam_pose_f(1,3) << " "

<< myloam_pose_f(2,0) << " " << myloam_pose_f(2,1) << " " << myloam_pose_f(2,2) << " " << myloam_pose_f(2,3) << std::endl;

pose1.close();

欧拉角到四元素的转换除了用eigen,还可以参考大佬:四元数与欧拉角(Yaw、Pitch、Roll)的转换

补充tum格式的轨迹输出(拿ALOAM举例,LIO-SAM修改相关参数即可)

// 位姿输出到txt文档

std::ofstream pose1("/home/cupido/output-data/kitti/sequences/07/aloam.txt", std::ios::app);

pose1.setf(std::ios::scientific, std::ios::floatfield);

pose1.precision(15);

//save final trajectory in the left camera coordinate system.

Eigen::Matrix3d rotation_matrix;

rotation_matrix = q_w_curr.toRotationMatrix();

Eigen::Matrix myaloam_pose;

myaloam_pose.topLeftCorner(3,3) = rotation_matrix;

myaloam_pose(0,3) = t_w_curr.x();

myaloam_pose(1,3) = t_w_curr.y();

myaloam_pose(2,3) = t_w_curr.z();

Eigen::Matrix cali_paremeter;

// cali_paremeter << 4.276802385584e-04, -9.999672484946e-01, -8.084491683471e-03, -1.198459927713e-02, //00-02

// -7.210626507497e-03, 8.081198471645e-03, -9.999413164504e-01, -5.403984729748e-02,

// 9.999738645903e-01, 4.859485810390e-04, -7.206933692422e-03, -2.921968648686e-01,

// 0, 0, 0, 1;

cali_paremeter << -1.857739385241e-03,-9.999659513510e-01, -8.039975204516e-03, -4.784029760483e-03, //04-10

-6.481465826011e-03, 8.051860151134e-03, -9.999466081774e-01, -7.337429464231e-02,

9.999773098287e-01, -1.805528627661e-03, -6.496203536139e-03, -3.339968064433e-01,

0, 0, 0, 1;

/*cali_paremeter << 2.347736981471e-04, -9.999441545438e-01, -1.056347781105e-02, -2.796816941295e-03, // 03

1.044940741659e-02, 1.056535364138e-02, -9.998895741176e-01, -7.510879138296e-02,

9.999453885620e-01, 1.243653783865e-04, 1.045130299567e-02, -2.721327964059e-01,

0, 0, 0, 1;*/

Eigen::Matrix myloam_pose_f;

myloam_pose_f = cali_paremeter * myaloam_pose * cali_paremeter.inverse();

Eigen::Matrix3d temp;

temp = myloam_pose_f.topLeftCorner(3,3);

Eigen::Quaterniond quaternion(temp);

// 获取当前更新的时间 这样与ground turth对比才更准确

static double timeStart = odometryBuf.front()-> header.stamp.toSec(); // 相当于是第一帧的时间

auto T1 = ros::Time().fromSec(timeStart);

pose1 << odomAftMapped.header.stamp - T1 << " "

<< myloam_pose_f(0,3) << " "

<< myloam_pose_f(1,3) << " "

<< myloam_pose_f(2,3) << " "

<< quaternion.x() << " "

<< quaternion.y() << " "

<< quaternion.z() << " "

<< quaternion.w() << std::endl;

pose1.close();

注意点: 1、输出路径注意修改 2、评估轨迹精度的时候,输出轨迹若发现未和真值完全对齐(这里指的是,不考虑自己算法精度,单纯两轨迹对齐),可以在终端输入以下指令:

//(注意是-a,不是--align_origin)

evo_ape tum groundtruth.txt xxx.txt -a -p

九、点云地图保存(PCD)

追根溯源:

1、注意到save_map.srv文件

float32 resolution

string destination

---

bool success

2、进入到mapOptmization.cpp

相关代码:

// 订阅一个保存地图功能的服务

srvSaveMap = nh.advertiseService("lio_sam/save_map", &mapOptimization::saveMapService, this);

/**

* 保存全局关键帧特征点集合

*/

bool saveMapService(lio_sam::save_mapRequest& req, lio_sam::save_mapResponse& res)

{

string saveMapDirectory;

cout << "****************************************************" << endl;

cout << "Saving map to pcd files ..." << endl;

// 如果是空,说明是程序结束后的自动保存,否则是中途调用ros的service发布的保存指令

if(req.destination.empty()) saveMapDirectory = std::getenv("HOME") + savePCDDirectory;

else saveMapDirectory = std::getenv("HOME") + req.destination;

cout << "Save destination: " << saveMapDirectory << endl;

// create directory and remove old files;

// 删掉之前有可能保存过的地图

int unused = system((std::string("exec rm -r ") + saveMapDirectory).c_str());

unused = system((std::string("mkdir -p ") + saveMapDirectory).c_str());

// save key frame transformations

// 首先保存历史关键帧轨迹

pcl::io::savePCDFileBinary(saveMapDirectory + "/trajectory.pcd", *cloudKeyPoses3D);

pcl::io::savePCDFileBinary(saveMapDirectory + "/transformations.pcd", *cloudKeyPoses6D);

// extract global point cloud map(提取历史关键帧角点、平面点集合)

pcl::PointCloud::Ptr globalCornerCloud(new pcl::PointCloud());

pcl::PointCloud::Ptr globalCornerCloudDS(new pcl::PointCloud());

pcl::PointCloud::Ptr globalSurfCloud(new pcl::PointCloud());

pcl::PointCloud::Ptr globalSurfCloudDS(new pcl::PointCloud());

pcl::PointCloud::Ptr globalMapCloud(new pcl::PointCloud());

// 遍历所有关键帧,将点云全部转移到世界坐标系下去

for (int i = 0; i < (int)cloudKeyPoses3D->size(); i++) {

*globalCornerCloud += *transformPointCloud(cornerCloudKeyFrames[i], &cloudKeyPoses6D->points[i]);

*globalSurfCloud += *transformPointCloud(surfCloudKeyFrames[i], &cloudKeyPoses6D->points[i]);

// 类似进度条的功能

cout << "\r" << std::flush << "Processing feature cloud " << i << " of " << cloudKeyPoses6D->size() << " ...";

}

// 如果没有指定分辨率,就是直接保存

if(req.resolution != 0)

{

cout << "\n\nSave resolution: " << req.resolution << endl;

// down-sample and save corner cloud

// 使用指定分辨率降采样,分别保存角点地图和面点地图

downSizeFilterCorner.setInputCloud(globalCornerCloud);

downSizeFilterCorner.setLeafSize(req.resolution, req.resolution, req.resolution);

downSizeFilterCorner.filter(*globalCornerCloudDS);

pcl::io::savePCDFileBinary(saveMapDirectory + "/CornerMap.pcd", *globalCornerCloudDS);

// down-sample and save surf cloud

downSizeFilterSurf.setInputCloud(globalSurfCloud);

downSizeFilterSurf.setLeafSize(req.resolution, req.resolution, req.resolution);

downSizeFilterSurf.filter(*globalSurfCloudDS);

pcl::io::savePCDFileBinary(saveMapDirectory + "/SurfMap.pcd", *globalSurfCloudDS);

}

else

{

// save corner cloud

pcl::io::savePCDFileBinary(saveMapDirectory + "/CornerMap.pcd", *globalCornerCloud);

// save surf cloud

pcl::io::savePCDFileBinary(saveMapDirectory + "/SurfMap.pcd", *globalSurfCloud);

}

// save global point cloud map(保存到一起,全局关键帧特征点集合)

*globalMapCloud += *globalCornerCloud;

*globalMapCloud += *globalSurfCloud;

// 保存全局地图

int ret = pcl::io::savePCDFileBinary(saveMapDirectory + "/GlobalMap.pcd", *globalMapCloud);

res.success = ret == 0;

downSizeFilterCorner.setLeafSize(mappingCornerLeafSize, mappingCornerLeafSize, mappingCornerLeafSize);

downSizeFilterSurf.setLeafSize(mappingSurfLeafSize, mappingSurfLeafSize, mappingSurfLeafSize);

cout << "****************************************************" << endl;

cout << "Saving map to pcd files completed\n" << endl;

return true;

}

std::thread visualizeMapThread(&mapOptimization::visualizeGlobalMapThread, &MO); // 可视化的线程(负责rviz相关可视化接口的发布)

visualizeMapThread.join();

/**

* 展示线程

* 1、发布局部关键帧map的特征点云

* 2、保存全局关键帧特征点集合

*/

// 全局可视化线程

void visualizeGlobalMapThread()

{

// 更新频率设置为0.2hz

ros::Rate rate(0.2);

while (ros::ok()){

rate.sleep();

// 发布局部关键帧map的特征点云

publishGlobalMap();

}

// 当ros被杀死之后,执行保存地图功能

if (savePCD == false)

return;

lio_sam::save_mapRequest req;

lio_sam::save_mapResponse res;

// 保存全局关键帧特征点集合

if(!saveMapService(req, res)){

cout << "Fail to save map" << endl;

}

}

这里注意到 if (savePCD == false)判断条件,转至配置文件params.yaml

3、最后在配置文件params.yaml修改参数

打开开关:

savePCD: true # https://github.com/TixiaoShan/LIO-SAM/issues/3

更改路径:

savePCDDirectory: "/output-data/lio-sam/PCD/" # in your home folder, starts and ends with "/". Warning: the code deletes "LOAM" folder then recreates it. See "mapOptimization" for implementation

对应路径和自身电脑的全局路径的关系如下:

4、PCD效果展示

1、指令:

pcl_viewer xxx.pcd

2、效果图:

此节参考大佬: 1、lio-sam中点云地图保存 2、复现lio_sam激光slam算法创建点云地图 3、PCL保存LIO-SAM地图时报错[pcl::PCDWriter::writeBinary]

全文参考文献

1、ubuntu18运行编译LIO-SAM并用官网和自己的数据建图(修改汇总) 2、LIO-SAM运行自己数据包遇到的问题解决–SLAM不学无数术小问题 3、使用开源激光SLAM方案LIO-SAM运行KITTI数据集,如有用,请评论雷锋 4、LIO-SAM:配置环境、安装测试、适配⾃⼰采集数据集 5、SLAM学习笔记(十九)开源3D激光SLAM总结大全——Cartographer3D,LOAM,Lego-LOAM,LIO-SAM,LVI-SAM,Livox-LOAM的原理解析及区别 6、多传感器融合定位 第六章 惯性导航结算及误差模型

相关文章

评论可见,请评论后查看内容,谢谢!!!
 您阅读本篇文章共花了: